Click here to close
Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly.
We suggest using a current version of Chrome,
FireFox, or Safari.
Differential pH sensitivity of Kir4.1 and Kir4.2 potassium channels and their modulation by heteropolymerisation with Kir5.1.
Pessia M
,
Imbrici P
,
D'Adamo MC
,
Salvatore L
,
Tucker SJ
.
???displayArticle.abstract???
1. The inwardly rectifying potassium channel Kir5.1 appears to form functional channels only by coexpression with either Kir4.1 or Kir4.2. Kir4.1-Kir5.1 heteromeric channels have been shown to exist in vivo in renal tubular epithelia. However, Kir5.1 is expressed in many other tissues where Kir4.1 is not found. Using Kir5.1-specific antibodies we have localised Kir5.1 expression in the pancreas, a tissue where Kir4.2 is also highly expressed. 2. Heteromeric Kir5.1-Kir4.1 channels are significantly more sensitive to intracellular acidification than Kir4.1 currents. We demonstrate that this increased sensitivity is primarily due to modulation of the intrinsic Kir4.1 pH sensitivity by Kir5.1. 3. Kir4.2 was found to be significantly more pH sensitive (pK(a) = 7.1) than Kir4.1 (pK(a) = 5.99) due to an additional pH-sensing mechanism involving the C-terminus. As a result, coexpression with Kir5.1 does not cause a major shift in the pH sensitivity of the heteromeric Kir4.2-Kir5.1 channel. 4. Cell-attached single channel analysis of Kir4.2 revealed a channel with a high open probability (P(o) > 0.9) and single channel conductance of approximately 25 pS, whilst coexpression with Kir5.1 produced novel bursting channels (P(o) < 0.3) and a principal conductance of approximately 54 pS with several subconductance states. 5. These results indicate that Kir5.1 may form heteromeric channels with Kir4.2 in tissues where Kir4.1 is not expressed (e.g. pancreas) and that these novel channels are likely to be regulated by changes in intracellular pH. In addition, the extreme pH sensitivity of Kir4.2 has implications for the role of this subunit as a homotetrameric channel.
Bond,
Cloning and expression of a family of inward rectifier potassium channels.
1994, Pubmed,
Xenbase
Bond,
Cloning and expression of a family of inward rectifier potassium channels.
1994,
Pubmed
,
Xenbase
Choe,
A conserved cytoplasmic region of ROMK modulates pH sensitivity, conductance, and gating.
1997,
Pubmed
,
Xenbase
Fakler,
Identification of a titratable lysine residue that determines sensitivity of kidney potassium channels (ROMK) to intracellular pH.
1996,
Pubmed
,
Xenbase
Gosset,
A new inward rectifier potassium channel gene (KCNJ15) localized on chromosome 21 in the Down syndrome chromosome region 1 (DCR1).
1997,
Pubmed
Nichols,
Inward rectifier potassium channels.
1997,
Pubmed
Pearson,
Expression of a functional Kir4 family inward rectifier K+ channel from a gene cloned from mouse liver.
1999,
Pubmed
,
Xenbase
Pessia,
Subunit positional effects revealed by novel heteromeric inwardly rectifying K+ channels.
1996,
Pubmed
,
Xenbase
Reimann,
Inwardly rectifying potassium channels.
1999,
Pubmed
Salvatore,
Localization and age-dependent expression of the inward rectifier K+ channel subunit Kir 5.1 in a mammalian reproductive system.
1999,
Pubmed
,
Xenbase
Schulte,
pH-dependent gating of ROMK (Kir1.1) channels involves conformational changes in both N and C termini.
1998,
Pubmed
,
Xenbase
Schulte,
pH gating of ROMK (K(ir)1.1) channels: control by an Arg-Lys-Arg triad disrupted in antenatal Bartter syndrome.
1999,
Pubmed
Shuck,
Cloning and characterization of two K+ inward rectifier (Kir) 1.1 potassium channel homologs from human kidney (Kir1.2 and Kir1.3).
1997,
Pubmed
,
Xenbase
Tanemoto,
In vivo formation of a proton-sensitive K+ channel by heteromeric subunit assembly of Kir5.1 with Kir4.1.
2000,
Pubmed
Tucker,
pH dependence of the inwardly rectifying potassium channel, Kir5.1, and localization in renal tubular epithelia.
2000,
Pubmed
Tucker,
Mapping of the physical interaction between the intracellular domains of an inwardly rectifying potassium channel, Kir6.2.
1999,
Pubmed
Xu,
Modulation of kir4.1 and kir5.1 by hypercapnia and intracellular acidosis.
2000,
Pubmed
,
Xenbase
Yang,
Biophysical and molecular mechanisms underlying the modulation of heteromeric Kir4.1-Kir5.1 channels by CO2 and pH.
2000,
Pubmed
,
Xenbase
Yang,
Opposite effects of pH on open-state probability and single channel conductance of kir4.1 channels.
1999,
Pubmed
,
Xenbase