Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Images Attributions Wiki Source
ECB-ANTIBODY-26396236

Attributions for msp130 Ab6

Summary: Papers (42) ???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

creation reported in:


Cell lineage conversion in the sea urchin embryo., Ettensohn CA, McClay DR., Dev Biol. February 1, 1988; 125 (2): 396-409.


referenced by:


An optimized Tet-On system for conditional control of gene expression in sea urchins., Khor JM, Ettensohn CA., Development. January 1, 2023; 150 (1):


Ethanol exposure perturbs sea urchin development and disrupts developmental timing., Rodríguez-Sastre N, Shapiro N, Hawkins DY, Lion AT, Peyreau M, Correa AE, Dionne K, Bradham CA., Dev Biol. January 1, 2023; 493 89-102.


Distinct regulatory states control the elongation of individual skeletal rods in the sea urchin embryo., Tarsis K, Gildor T, Morgulis M, Ben-Tabou de-Leon S., Dev Dyn. August 1, 2022; 251 (8): 1322-1339.                  


Ovothiol ensures the correct developmental programme of the sea urchin Paracentrotus lividus embryo., Milito A, Cocurullo M, Columbro A, Nonnis S, Tedeschi G, Castellano I, Arnone MI, Palumbo A., Open Biol. January 1, 2022; 12 (1): 210262.              


Conditional gene knockdowns in sea urchins using caged morpholinos., Bardhan A, Deiters A, Ettensohn CA., Dev Biol. July 1, 2021; 475 21-29.


Post-metamorphic skeletal growth in the sea urchin Paracentrotus lividus and implications for body plan evolution., Thompson JR, Paganos P, Benvenuto G, Arnone MI, Oliveri P., Evodevo. March 16, 2021; 12 (1): 3.          


Calcium-vesicles perform active diffusion in the sea urchin embryo during larval biomineralization., Winter MR, Morgulis M, Gildor T, Cohen AR, Ben-Tabou de-Leon S., PLoS Comput Biol. February 22, 2021; 17 (2): e1008780.                


The evolution of a new cell type was associated with competition for a signaling ligand., Ettensohn CA, Adomako-Ankomah A., PLoS Biol. September 18, 2019; 17 (9): e3000460.                    


Cdc42 controls primary mesenchyme cell morphogenesis in the sea urchin embryo., Sepúlveda-Ramírez SP, Toledo-Jacobo L, Henson JH, Shuster CB., Dev Biol. May 15, 2018; 437 (2): 140-151.            


Global analysis of primary mesenchyme cell cis-regulatory modules by chromatin accessibility profiling., Shashikant T, Khor JM, Ettensohn CA., BMC Genomics. March 20, 2018; 19 (1): 206.            


Thyroid Hormones Accelerate Initiation of Skeletogenesis via MAPK (ERK1/2) in Larval Sea Urchins (Strongylocentrotus purpuratus)., Taylor E, Heyland A., Front Endocrinol (Lausanne). January 1, 2018; 9 439.                          


Functional divergence of paralogous transcription factors supported the evolution of biomineralization in echinoderms., Khor JM, Ettensohn CA., Elife. November 20, 2017; 6                                 


Endocytosis in primary mesenchyme cells during sea urchin larval skeletogenesis., Killian CE, Wilt FH., Exp Cell Res. October 1, 2017; 359 (1): 205-214.


Characterization and expression analysis of Galnts in developing Strongylocentrotus purpuratus embryos., Famiglietti AL, Wei Z, Beres TM, Milac AL, Tran DT, Patel D, Angerer RC, Angerer LM, Tabak LA., PLoS One. April 17, 2017; 12 (4): e0176479.            


KirrelL, a member of the Ig-domain superfamily of adhesion proteins, is essential for fusion of primary mesenchyme cells in the sea urchin embryo., Ettensohn CA, Dey D., Dev Biol. January 15, 2017; 421 (2): 258-270.


TGF-β sensu stricto signaling regulates skeletal morphogenesis in the sea urchin embryo., Sun Z, Ettensohn CA., Dev Biol. January 15, 2017; 421 (2): 149-160.


Zygotic LvBMP5-8 is required for skeletal patterning and for left-right but not dorsal-ventral specification in the sea urchin embryo., Piacentino ML, Chung O, Ramachandran J, Zuch DT, Yu J, Conaway EA, Reyna AE, Bradham CA., Dev Biol. April 1, 2016; 412 (1): 44-56.


RNA-Seq identifies SPGs as a ventral skeletal patterning cue in sea urchins., Piacentino ML, Zuch DT, Fishman J, Rose S, Speranza EE, Li C, Yu J, Chung O, Ramachandran J, Ferrell P, Patel V, Reyna A, Hameeduddin H, Chaves J, Hewitt FB, Bardot E, Lee D, Core AB, Hogan JD, Keenan JL, Luo L, Coulombe-Huntington J, Blute TA, Oleinik E, Ibn-Salem J, Poustka AJ, Bradham CA., Development. February 15, 2016; 143 (4): 703-14.


H(+)/K(+) ATPase activity is required for biomineralization in sea urchin embryos., Schatzberg D, Lawton M, Hadyniak SE, Ross EJ, Carney T, Beane WS, Levin M, Bradham CA., Dev Biol. October 15, 2015; 406 (2): 259-70.


Late Alk4/5/7 signaling is required for anterior skeletal patterning in sea urchin embryos., Piacentino ML, Ramachandran J, Bradham CA., Development. March 1, 2015; 142 (5): 943-52.


Genome-wide analysis of the skeletogenic gene regulatory network of sea urchins., Rafiq K, Shashikant T, McManus CJ, Ettensohn CA., Development. February 1, 2014; 141 (4): 950-61.


Growth factor-mediated mesodermal cell guidance and skeletogenesis during sea urchin gastrulation., Adomako-Ankomah A, Ettensohn CA., Development. October 1, 2013; 140 (20): 4214-25.


Axial patterning interactions in the sea urchin embryo: suppression of nodal by Wnt1 signaling., Wei Z, Range R, Angerer R, Angerer L., Development. May 1, 2012; 139 (9): 1662-9.


Rapid adaptation to food availability by a dopamine-mediated morphogenetic response., Adams DK, Sewell MA, Angerer RC, Angerer LM., Nat Commun. December 20, 2011; 2 592.        


Regulative deployment of the skeletogenic gene regulatory network during sea urchin development., Sharma T, Ettensohn CA., Development. June 1, 2011; 138 (12): 2581-90.


P58-A and P58-B: novel proteins that mediate skeletogenesis in the sea urchin embryo., Adomako-Ankomah A, Ettensohn CA., Dev Biol. May 1, 2011; 353 (1): 81-93.


Activation of the skeletogenic gene regulatory network in the early sea urchin embryo., Sharma T, Ettensohn CA., Development. April 1, 2010; 137 (7): 1149-57.


Gene regulatory networks and developmental plasticity in the early sea urchin embryo: alternative deployment of the skeletogenic gene regulatory network., Ettensohn CA, Kitazawa C, Cheers MS, Leonard JD, Sharma T., Development. September 1, 2007; 134 (17): 3077-87.


P16 is an essential regulator of skeletogenesis in the sea urchin embryo., Cheers MS, Ettensohn CA., Dev Biol. July 15, 2005; 283 (2): 384-96.


Alx1, a member of the Cart1/Alx3/Alx4 subfamily of Paired-class homeodomain proteins, is an essential component of the gene network controlling skeletogenic fate specification in the sea urchin embryo., Ettensohn CA, Illies MR, Oliveri P, De Jong DL., Development. July 1, 2003; 130 (13): 2917-28.              


Inhibition of mitogen activated protein kinase signaling affects gastrulation and spiculogenesis in the sea urchin embryo., Kumano M, Foltz KR., Dev Growth Differ. January 1, 2003; 45 (5-6): 527-42.


LvDelta is a mesoderm-inducing signal in the sea urchin embryo and can endow blastomeres with organizer-like properties., Sweet HC, Gehring M, Ettensohn CA., Development. April 1, 2002; 129 (8): 1945-55.


Cell-substrate interactions during sea urchin gastrulation: migrating primary mesenchyme cells interact with and align extracellular matrix fibers that contain ECM3, a molecule with NG2-like and multiple calcium-binding domains., Hodor PG, Illies MR, Broadley S, Ettensohn CA., Dev Biol. June 1, 2000; 222 (1): 181-94.


The role of micromere signaling in Notch activation and mesoderm specification during sea urchin embryogenesis., Sweet HC, Hodor PG, Ettensohn CA., Development. December 1, 1999; 126 (23): 5255-65.


The dynamics and regulation of mesenchymal cell fusion in the sea urchin embryo., Hodor PG, Ettensohn CA., Dev Biol. July 1, 1998; 199 (1): 111-24.


A fate map of the vegetal plate of the sea urchin (Lytechinus variegatus) mesenchyme blastula., Ruffins SW, Ettensohn CA., Development. January 1, 1996; 122 (1): 253-63.


Primary mesenchyme cell migration in the sea urchin embryo: distribution of directional cues., Malinda KM, Ettensohn CA., Dev Biol. August 1, 1994; 164 (2): 562-78.


Size regulation and morphogenesis: a cellular analysis of skeletogenesis in the sea urchin embryo., Ettensohn CA, Malinda KM., Development. September 1, 1993; 119 (1): 155-67.


Mesodermal cell interactions in the sea urchin embryo: properties of skeletogenic secondary mesenchyme cells., Ettensohn CA, Ruffins SW., Development. April 1, 1993; 117 (4): 1275-85.


The regulation of primary mesenchyme cell patterning., Ettensohn CA., Dev Biol. August 1, 1990; 140 (2): 261-71.


Cell interactions in the sea urchin embryo studied by fluorescence photoablation., Ettensohn CA., Science. June 1, 1990; 248 (4959): 1115-8.

???pagination.result.page??? 1