ECB-ART-53415
Int J Biol Macromol
2024 Dec 19;283Pt 4:137901. doi: 10.1016/j.ijbiomac.2024.137901.
Show Gene links
Show Anatomy links
Calnexin interacts with B-cell receptor-associated protein 31 (Bap31) to mediate coelomocyte phagocytosis and Vibrio splendidus clearance in Apostichopus japonicus.
???displayArticle.abstract???
Calnexin serves as a lectin chaperone located on the endoplasmic reticulum membrane and functions in glycoprotein folding and synthesis quality control, as well as in Ca2+ storage. Calnexin is extensively documented to participate in host immunity in the endoplasmic reticulum. However, the functions and fundamental mechanisms of calnexin in the invertebrate innate defence remain largely unknown. In this research, the complete cDNA sequence for calnexin from Apostichopus japonicus (Ajcalnexin) was cloned, revealing a 1779 bp open reading frame that codes for 592 amino acids, 113 bp 5'-Untranslated Region (UTR), and 3251 bp 3'-UTR. Upon Vibrio splendidus infection, both AjCalnexin mRNA and protein levels were significantly increased in coelomocytes. Knocking down Ajcalnexin with specific siRNAs significantly decreased coelomocyte phagocytosis, reducing the intracellular load of V. splendidus. By contrast, overexpression of AjCalnexin using recombinant AjCalnexin protein (rAjCalnexin) had the opposite effect. Moreover, B-cell receptor-associated protein 31 of A. japonicus (AjBap31) was identified as an interacting partner of AjCalnexin, which positively regulates AjBap31 expression. Silencing Ajbap31 also decreased coelomocyte phagocytosis and inhibited the intracellular load of V. splendidus. Furthermore, phagocytosis levels and intracellular loads of V. splendidus in the coelomocytes of sea cucumbers treated with rAjCalnexin and siAjBap31 were significantly lower than those in rAjCalnexin- and siNC-treated sea cucumbers. Collectively, we provide the first functional evidence that the AjCalnexin-AjBap31 axis plays a crucial role in host immune defence by mediating coelomocyte phagocytosis in A. japonicus during V. splendidus infection. These findings enhance understanding of the regulatory mechanism of phagocytosis in echinoderms and offer theoretical insights for preventing and controlling skin ulcer syndrome in sea cucumbers.
???displayArticle.pubmedLink??? 39571859
???displayArticle.link??? Int J Biol Macromol