Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-53394
ACS Omega 2024 Oct 12;945:45564-45571. doi: 10.1021/acsomega.4c07865.
Show Gene links Show Anatomy links

Identification of the Active EPA/AA-Binding Ether-Type Phosphatidylcholine Derived from the Starfish Patiria pectinifera for C2C12 Myotube Growth.

Fukushima A , Imamura K , Takatani N , Hosokawa M , Beppu F .


???displayArticle.abstract???
Concerns about nutritional approaches for promoting skeletal muscle mass and function have increased. This study assessed the effects of starfish-derived glycerophospholipids (PLs) (SPL), characterized by unique ether-linked subclasses, alkylacyl (Alk)- and alkenylacyl (Pls)-PL, on skeletal muscle function, focusing on myotube formation in C2C12 myoblasts. SPL was prepared via chloroform/methanol extraction from Patiria pectinifera, followed by silica gel chromatography fractionation. Myoblasts were induced to differentiate with or without SPL treatment. On day 7 of differentiation, 50 μg/mL of SPL treatment increased myotube diameter. The phosphatidylcholine (PC) fraction (SPC) also enhanced myotube growth at 30 μg/mL. LC-MS/MS analysis indicated the most abundant PC molecular species in SPC were Alk- and Pls-PC with eicosapentaenoic acid and arachidonic acid. Treatment with 1-O-hexadecyl-2-arachidonoyl-PC, 1-1(Z)-hexadecenyl-2-arachidonoyl-PC or 1-O-hexadecyl-2-eicosapentaenoyl-PC increased myotube diameter and myokine Il-15 mRNA expression. These results demonstrate a novel functionality of SPC and highlight the role of ether-type PC molecules in muscle function.

???displayArticle.pubmedLink??? 39554463
???displayArticle.link??? ACS Omega