Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-53321
Curr Microbiol 2024 Oct 10;8111:401. doi: 10.1007/s00284-024-03914-3.
Show Gene links Show Anatomy links

Cyanobacteria-Fungi Co-Cultures: Which Partner Contributes to Antifungal Activity?

Stirk WA , Pap B , Maróti G , van Staden J , Ördög V .


???displayArticle.abstract???
Cyanobacteria synthesize secondary metabolites with antifungal activity, making them potential biopesticide agents for sustainable, eco-friendly agriculture. Programmes to identify Cyanobacterial strains with effective bioactivity generally screen strains maintained in culture collections. These strains are often monoclonal but non-axenic and this may potentially influence the bioactivity of the generated biomass. The present study investigated in vitro antifungal activity of Nostoc muscorum MACC-189 and N. linckia MACC-612 strains co-isolated with fungal co-partners and maintained in the Mosonmagyaróvár Algal Culture Collection (MACC). The fungal co-partners were isolated from the Cyanobacterial stock cultures and identified as Purpureocillium lilacinum and Sarocladium sp., respectively. The cultures were tested against seven phytopathogens. The phytopathogenic fungi were grown on potato dextrose agar plates and suspension cultures of the Cyanobacteria-fungi and isolated fungal co-partners were placed in the centre of the plate. Antifungal effects were assessed semi-quantitatively after 10 days of incubation. The Cyanobacteria-fungal co-cultures had antifungal activity against Monilinia fructigena and Aspergillus sp. with the N. muscorum/P. lilacinum culture being the most effective. The fungal isolates inhibited M. fructigena with P. lilacinum having a dose-dependent response but did not inhibit Aspergillus sp. This suggested that the antifungal effect of the Cyanobacterial cultures on M. fructigena was due to the fungal partner rather than the cyanobacterium while the antifungal effect on Aspergillus sp. was due to the cyanobacterium partner. As it was not possible to maintain living axenic N. muscorum and N. linckia cultures, this could not be conclusively confirmed. These results highlight the importance of either using axenic cultures or identifying the co-isolates when testing Cyanobacteria cultures for antifungal bioactivity.

???displayArticle.pubmedLink??? 39390144
???displayArticle.link??? Curr Microbiol
???displayArticle.grants??? [+]