Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-53298
Sci Adv 2024 Oct 04;1040:eado5084. doi: 10.1126/sciadv.ado5084.
Show Gene links Show Anatomy links

P2X7 receptors exhibit at least three modes of allosteric antagonism.

Oken AC , Ditter IA , Lisi NE , Krishnamurthy I , Godsey MH , Mansoor SE .


???displayArticle.abstract???
P2X receptors are trimeric ion channels activated by adenosine triphosphate (ATP) that contribute to pathophysiological processes ranging from asthma to neuropathic pain and neurodegeneration. A number of small-molecule antagonists have been identified for these important pharmaceutical targets. However, the molecular pharmacology of P2X receptors is poorly understood because of the chemically disparate nature of antagonists and their differential actions on the seven constituent subtypes. Here, we report high-resolution cryo-electron microscopy structures of the homomeric rat P2X7 receptor bound to five previously known small-molecule allosteric antagonists and a sixth antagonist that we identify. Our structural, biophysical, and electrophysiological data define the molecular determinants of allosteric antagonism in this pharmacologically relevant receptor, revealing three distinct classes of antagonists that we call shallow, deep, and starfish. Starfish binders, exemplified by the previously unidentified antagonist methyl blue, represent a unique class of inhibitors with distinct functional properties that could be exploited to develop potent P2X7 ligands with substantial clinical impact.

???displayArticle.pubmedLink??? 39365862
???displayArticle.link??? Sci Adv
???displayArticle.grants??? [+]