Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-53232
J Exp Biol 2024 Sep 09; doi: 10.1242/jeb.247523.
Show Gene links Show Anatomy links

Finding food: how generalist predators use contact-chemosensory information to guide prey preferences.

Zimmer RK , Ferrier GA , Zimmer CA .


???displayArticle.abstract???
Understanding the processes that guide carnivores in finding and selecting prey is a fundamental, unresolved challenge in sensory biology. To our knowledge, no published work has yet revealed the complete structural identities of compounds that cue preferences by generalist predators for different prey species. With this research imperative in mind, we determined the chemistry driving consumer preferences for live, intact, prey. The present study used two generalist predatory species (sea stars, Pisaster ochraceus; whelks, Acanthinucella spirata), along with two foundation prey species (mussels, Mytilus californianus; barnacles, Balanus glandula), inhabiting rocky, wave-swept shores. Each prey species is known to secrete either a 29.6 kDa (named "KEYSTONEin") or a 199.6 kDa (named "MULTIFUNCin") glycoprotein as a contact-chemical cue. Here, experimental manipulations utilized faux prey consisting of cleaned barnacle or mussel shells infused with KEYSTONEin, MULTIFUNCin, or seawater (control) gels. Whelks exhibited a strong penchant for MULTIFUNCin over KEYSTONEin, irrespective of shell type. In contrast, sea stars generally preferred KEYSTONEin over MULTIFUNCin, but this preference shifted depending on the experimental context in which they encountered physical (shell) and chemical (glycoprotein) stimuli. This study ultimately demonstrates clear and contrasting chemical preferences between sea stars and whelks. It highlights the importance of experimental setting in determining chemical preferences. Finally, it shows that prey preferences by these predators hinge only on one or two contact-protein cues, without the need for quality coding via fluid-borne compounds, low-molecular-weight substances, or mixture blends.

???displayArticle.pubmedLink??? 39246153
???displayArticle.link??? J Exp Biol
???displayArticle.grants??? [+]