ECB-ART-50214
J Exp Mar Biol Ecol
2001 Jun 15;2611:31-54. doi: 10.1016/s0022-0981(01)00257-x.
Show Gene links
Show Anatomy links
Partitioning of food resources amongst 18 abundant benthic carnivorous fish species in marine waters on the lower west coast of Australia.
???displayArticle.abstract???
The volumetric contributions made by prey and plant material to the diets of 4 elasmobranch and 14 teleost species, collected seasonally by trawling from waters along ca. 200 km of the lower west coast of Australia, have been compared. These benthic carnivores, which were all abundant and collectively contributed 83% to the total number of fish caught, represented nine families (Urolophidae, Scorpaenidae, Triglidae, Platycephalidae, Sillaginidae, Carangidae, Gerreidae, Mullidae and Pempherididae). Some species were numerous in both shallow (5-15 m) and deeper (20-35 m) waters and in both northern and southern regions, whereas others were largely confined to one of these water depths or regions. Comparisons between the diets of the different species, which utilised data collected from individuals throughout the study area, demonstrated that the dietary composition of any given species was almost invariably significantly different from that of every other species. This partly reflected the fact that, while errant polychaetes, gammarid amphipods and tanaids were ingested by all species, their contributions to the diets of the different species varied. Furthermore, echinoderms contributed to the diets of just nine species, and this was substantial only in the case of two sillaginid species, while teleosts were never consumed by six species and only made a marked contribution to the diets of the single species of platycephalid. The diet of each species underwent size-related changes, reflecting a shift from the consumption by smaller fish of prey such as amphipods, mysids and copepods, to the ingestion by larger fish of prey such as polychaetes, carid decapods, isopods and small teleosts. The interspecific and intraspecific differences in dietary compositions would spread the food resources amongst and within species, thereby reducing the potential for competition for those resources within the fish community. Non-metric multi-dimensional scaling (MDS) ordination plots emphasised that the dietary compositions of species within each family possessed some obvious similarities, reflecting similarities in body and mouth morphology and feeding behaviour. However, the extent to which the dietary compositions of the different families were similar or different was often not related to the phylogenetic relationships amongst those families. Furthermore, while differences in mouth size and morphology could sometimes be used to account for differences amongst the diets of the full suite of species, this was not always the case. Thus, the ways in which species feed and use their ancillary feeding structures were also employed to help elucidate the basis for variations in diets.
???displayArticle.pubmedLink??? 11438104
???displayArticle.link??? J Exp Mar Biol Ecol