Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Profile Publications (35)
ECB-PERS-4212

Publications By Raymond E Stephens

???pagination.result.count???

???pagination.result.page??? 1


Ciliogenesis, ciliary function, and selective isolation., Stephens RE., ACS Chem Biol. February 15, 2008; 3 (2): 84-6.


Tektin interactions and a model for molecular functions., Setter PW, Malvey-Dorn E, Steffen W, Stephens RE, Linck RW., Exp Cell Res. September 10, 2006; 312 (15): 2880-96.


Ciliary protein turnover continues in the presence of inhibitors of golgi function: evidence for membrane protein pools and unconventional intracellular membrane dynamics., Stephens RE., J Exp Zool. May 1, 2001; 289 (6): 335-49.


Preferential incorporation of tubulin into the junctional region of ciliary outer doublet microtubules: a model for treadmilling by lattice dislocation., Stephens RE., Cell Motil Cytoskeleton. October 1, 2000; 47 (2): 130-40.


Molecular chaperones in cilia and flagella: implications for protein turnover., Stephens RE, Lemieux NA., Cell Motil Cytoskeleton. December 1, 1999; 44 (4): 274-83.


Turnover of tubulin in ciliary outer doublet microtubules., Stephens RE., Cell Struct Funct. October 1, 1999; 24 (5): 413-8.


Synthesis and turnover of embryonic sea urchin ciliary proteins during selective inhibition of tubulin synthesis and assembly., Stephens RE., Mol Biol Cell. November 1, 1997; 8 (11): 2187-98.


Selective incorporation of architectural proteins into terminally differentiated molluscan gill cilia., Stephens RE., J Exp Zool. April 1, 1996; 274 (5): 300-9.


Transcriptional control of tektin A mRNA correlates with cilia development and length determination during sea urchin embryogenesis., Norrander JM, Linck RW, Stephens RE., Development. June 1, 1995; 121 (6): 1615-23.


Ciliogenesis in sea urchin embryos--a subroutine in the program of development., Stephens RE., Bioessays. April 1, 1995; 17 (4): 331-40.


Preparation of ciliary and flagellar remnants., Stephens RE., Methods Cell Biol. January 1, 1995; 47 361-4.


Ciliary membrane tubulin: isolation and fractionation., Stephens RE., Methods Cell Biol. January 1, 1995; 47 431-6.


Dynein inner arm heavy chain identification in cAMP-activated flagella using class-specific polyclonal antibodies., Stephens RE, Prior G., Cell Motil Cytoskeleton. January 1, 1995; 30 (4): 261-71.


Rapid induction of a hyperciliated phenotype in zinc-arrested sea urchin embryos by theophylline., Stephens RE., J Exp Zool. June 1, 1994; 269 (2): 106-15.


Tubulin and tektin in sea urchin embryonic cilia: pathways of protein incorporation during turnover and regeneration., Stephens RE., J Cell Sci. February 1, 1994; 107 ( Pt 2) 683-92.


Tubulin in sea urchin embryonic cilia: post-translational modifications during regeneration., Stephens RE., J Cell Sci. April 1, 1992; 101 ( Pt 4) 837-45.


Tubulin in sea urchin embryonic cilia: characterization of the membrane-periaxonemal matrix., Stephens RE., J Cell Sci. November 1, 1991; 100 ( Pt 3) 521-31.


Retention of ciliary ninefold structure after removal of microtubules., Stephens RE, Oleszko-Szuts S, Linck RW., J Cell Sci. March 1, 1989; 92 ( Pt 3) 391-402.


Quantal tektin synthesis and ciliary length in sea-urchin embryos., Stephens RE., J Cell Sci. March 1, 1989; 92 ( Pt 3) 403-13.


Separation of tubulin subunits by reversed-phase high-performance liquid chromatography., Stephens RE., J Chromatogr. September 16, 1988; 448 (3): 371-86.


Evidence that tubulin forms an integral membrane skeleton in molluscan gill cilia., Stephens RE, Oleszko-Szuts S, Good MJ., J Cell Sci. November 1, 1987; 88 ( Pt 4) 527-35.


Biochemical characterization of tektins from sperm flagellar doublet microtubules., Linck RW, Stephens RE., J Cell Biol. April 1, 1987; 104 (4): 1069-75.


Isolation of embryonic cilia and sperm flagella., Stephens RE., Methods Cell Biol. January 1, 1986; 27 217-27.


Equimolar heterodimers in microtubules., Stephens RE., J Cell Biol. August 1, 1982; 94 (2): 263-70.


Primary structural differences among tubulin subunits from flagella, cilia, and the cytoplasm., Stephens RE., Biochemistry. July 11, 1978; 17 (14): 2882-91.


Differential protein synthesis and utilization during cilia formation in sea urchin embryos., Stephens RE., Dev Biol. December 1, 1977; 61 (2): 311-29.


Microtubules: structure, chemistry, and function., Stephens RE, Edds KT., Physiol Rev. October 1, 1976; 56 (4): 709-77.


Structural chemistry of the axoneme: evidence for chemically and functionally unique tubulin dimers in outer fibers., Stephens RE., Soc Gen Physiol Ser. January 1, 1975; 30 181-206.


A thermodynamic analysis of mitotic spindle equilibrium at active metaphase., Stephens RE., J Cell Biol. April 1, 1973; 57 (1): 133-47.


Studies on the development of the sea urchin Strongylocentrotus droebachiensis. I. Ecology and normal development., Stephens RE., Biol Bull. February 1, 1972; 142 (1): 132-44.


Serological similarity of flagellar and mitotic microtubules., Fulton C, Kane RE, Stephens RE., J Cell Biol. September 1, 1971; 50 (3): 762-73.


Some properties of hyalin: the calcium-insoluble protein of the hyaline layer of the sea urchin egg., Stephens RE, Kane RE., J Cell Biol. March 1, 1970; 44 (3): 611-7.


A comparative study of the isolation of the cortex and the role of the calcium-insoluble protein in several species of sea urchin egg., Kane RE, Stephens RE., J Cell Biol. April 1, 1969; 41 (1): 133-44.


Guanine nucleotide associated with the protein of the outer fibers of flagella and cilia., Stephens RE, Renaud FL, Gibbons IR, Stevens RE., Science. June 23, 1967; 156 (3782): 1606-8.


The mitotic apparatus. Physical chemical characterization of the 22S protein component and its subunits., Stephens RE., J Cell Biol. February 1, 1967; 32 (2): 255-75.

???pagination.result.page??? 1