Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (100) Expression Attributions Wiki
ECB-ANAT-55

Papers associated with vegetal plate

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Three cell recognition changes accompany the ingression of sea urchin primary mesenchyme cells., Fink RD., Dev Biol. January 1, 1985; 107 (1): 66-74.


The origin of pigment cells in embryos of the sea urchin Strongylocentrotus purpuratus., Gibson AW., Dev Biol. February 1, 1985; 107 (2): 414-9.


The effects of aphidicolin on morphogenesis and differentiation in the sea urchin embryo., Stephens L., Dev Biol. November 1, 1986; 118 (1): 64-9.


Lineage and fate of each blastomere of the eight-cell sea urchin embryo., Cameron RA., Genes Dev. March 1, 1987; 1 (1): 75-85.


Migratory and invasive behavior of pigment cells in normal and animalized sea urchin embryos., Gibson AW., Exp Cell Res. December 1, 1987; 173 (2): 546-57.


The origin of skeleton forming cells in the sea urchin embryo., Urben S., Rouxs Arch Dev Biol. January 1, 1988; 197 (8): 447-456.


Electron microscopic studies on primary mesenchyme cell ingression and gastrulation in relation to vegetal pole cell behavior in sea urchin embryos., Amemiya S., Exp Cell Res. August 1, 1989; 183 (2): 453-62.


Endo16, a lineage-specific protein of the sea urchin embryo, is first expressed just prior to gastrulation., Nocente-McGrath C., Dev Biol. November 1, 1989; 136 (1): 264-72.


Cell movements during the initial phase of gastrulation in the sea urchin embryo., Burke RD., Dev Biol. August 1, 1991; 146 (2): 542-57.


Macromere cell fates during sea urchin development., Cameron RA., Development. December 1, 1991; 113 (4): 1085-91.


Pattern formation during gastrulation in the sea urchin embryo., McClay DR., Dev Suppl. January 1, 1992; 33-41.


Commitment along the dorsoventral axis of the sea urchin embryo is altered in response to NiCl2., Hardin J., Development. November 1, 1992; 116 (3): 671-85.


Transient, localized accumulation of alpha-spectrin during sea urchin morphogenesis., Wessel GM., Dev Biol. January 1, 1993; 155 (1): 161-71.


A complete second gut induced by transplanted micromeres in the sea urchin embryo., Ransick A., Science. February 19, 1993; 259 (5098): 1134-8.


A role for regulated secretion of apical extracellular matrix during epithelial invagination in the sea urchin., Lane MC., Development. March 1, 1993; 117 (3): 1049-60.


Developmental potential of muscle cell progenitors and the myogenic factor SUM-1 in the sea urchin embryo., Venuti JM., Mech Dev. April 1, 1993; 41 (1): 3-14.


Whole mount in situ hybridization shows Endo 16 to be a marker for the vegetal plate territory in sea urchin embryos., Ransick A., Mech Dev. August 1, 1993; 42 (3): 117-24.


A clonal analysis of secondary mesenchyme cell fates in the sea urchin embryo., Ruffins SW., Dev Biol. November 1, 1993; 160 (1): 285-8.


An N-linked carbohydrate-containing extracellular matrix determinant plays a key role in sea urchin gastrulation., Ingersoll EP., Dev Biol. June 1, 1994; 163 (2): 351-66.


Spatial distribution of two maternal messengers in Paracentrotus lividus during oogenesis and embryogenesis., Di Carlo M., Proc Natl Acad Sci U S A. June 7, 1994; 91 (12): 5622-6.


Complexity and organization of DNA-protein interactions in the 5''-regulatory region of an endoderm-specific marker gene in the sea urchin embryo., Yuh CH., Mech Dev. August 1, 1994; 47 (2): 165-86.


Selective inhibition of gastrulation in the starfish embryo by albuside B, an inosine analogue., Shimizu T., FEBS Lett. August 7, 1995; 369 (2-3): 221-4.


A sea urchin homologue of the chordate Brachyury (T) gene is expressed in the secondary mesenchyme founder cells., Harada Y., Development. September 1, 1995; 121 (9): 2747-54.


Micromeres are required for normal vegetal plate specification in sea urchin embryos., Ransick A., Development. October 1, 1995; 121 (10): 3215-22.


A fate map of the vegetal plate of the sea urchin (Lytechinus variegatus) mesenchyme blastula., Ruffins SW., Development. January 1, 1996; 122 (1): 253-63.


Modular cis-regulatory organization of Endo16, a gut-specific gene of the sea urchin embryo., Yuh CH., Development. April 1, 1996; 122 (4): 1069-82.


Endoderm differentiation in vitro identifies a transitional period for endoderm ontogeny in the sea urchin embryo., Chen SW., Dev Biol. April 10, 1996; 175 (1): 57-65.


Modular cis-regulatory organization of developmentally expressed genes: two genes transcribed territorially in the sea urchin embryo, and additional examples., Kirchhamer CV., Proc Natl Acad Sci U S A. September 3, 1996; 93 (18): 9322-8.


Spatial expression of alpha and beta tubulin genes in the late embryogenesis of the sea urchin Paracentrotus lividus., Casano C., Int J Dev Biol. October 1, 1996; 40 (5): 1033-41.


The initial phase of gastrulation in sea urchins is accompanied by the formation of bottle cells., Nakajima Y., Dev Biol. November 1, 1996; 179 (2): 436-46.


Expression of S9 and actin CyIIa mRNAs reveals dorso-ventral polarity and mesodermal sublineages in the vegetal plate of the sea urchin embryo., Miller RN., Mech Dev. November 1, 1996; 60 (1): 3-12.


Quantitative functional interrelations within the cis-regulatory system of the S. purpuratus Endo16 gene., Yuh CH., Development. December 1, 1996; 122 (12): 4045-56.


Spatial expression of a forkhead homologue in the sea urchin embryo., Harada Y., Mech Dev. December 1, 1996; 60 (2): 163-73.


Very early and transient vegetal-plate expression of SpKrox1, a Krüppel/Krox gene from Stronglyocentrotus purpuratus., Wang W., Mech Dev. December 1, 1996; 60 (2): 185-95.


The evolution of Msx gene function: expression and regulation of a sea urchin Msx class homeobox gene., Dobias SL., Mech Dev. January 1, 1997; 61 (1-2): 37-48.


Comparative analysis of fibrillar and basement membrane collagen expression in embryos of the sea urchin, Strongylocentrotus purpuratus., Suzuki HR., Zoolog Sci. June 1, 1997; 14 (3): 449-54.


Two Otx proteins generated from multiple transcripts of a single gene in Strongylocentrotus purpuratus., Li X., Dev Biol. July 15, 1997; 187 (2): 253-66.


Identification and localization of a sea urchin Notch homologue: insights into vegetal plate regionalization and Notch receptor regulation., Sherwood DR., Development. September 1, 1997; 124 (17): 3363-74.


Green Fluorescent Protein in the sea urchin: new experimental approaches to transcriptional regulatory analysis in embryos and larvae., Arnone MI., Development. November 1, 1997; 124 (22): 4649-59.


Late specification of Veg1 lineages to endodermal fate in the sea urchin embryo., Ransick A., Dev Biol. March 1, 1998; 195 (1): 38-48.


Differential expression of sea urchin Otx isoform (hpOtxE and HpOtxL) mRNAs during early development., Mitsunaga-Nakatsubo K., Int J Dev Biol. July 1, 1998; 42 (5): 645-51.


Characterization of Involution during Sea Urchin Gastrulation Using Two-Photon Excited Photorelease and Confocal Microscopy., Piston DW., Microsc Microanal. July 1, 1998; 4 (4): 404-414.


beta-Catenin is essential for patterning the maternally specified animal-vegetal axis in the sea urchin embryo., Wikramanayake AH., Proc Natl Acad Sci U S A. August 4, 1998; 95 (16): 9343-8.


Specification of cell fate in the sea urchin embryo: summary and some proposed mechanisms., Davidson EH., Development. September 1, 1998; 125 (17): 3269-90.


The betaL integrin subunit is necessary for gastrulation in sea urchin embryos., Marsden M., Dev Biol. November 1, 1998; 203 (1): 134-48.


Bottle cells are required for the initiation of primary invagination in the sea urchin embryo., Kimberly EL., Dev Biol. December 1, 1998; 204 (1): 235-50.


Histone deacetylase mRNA temporally and spatially regulated in its expression in sea urchin embryos., Nemer M., Dev Growth Differ. December 1, 1998; 40 (6): 583-90.


Expression pattern of Brachyury and Not in the sea urchin: comparative implications for the origins of mesoderm in the basal deuterostomes., Peterson KJ., Dev Biol. March 15, 1999; 207 (2): 419-31.


Lim1 related homeobox gene (HpLim1) expressed in sea urchin embryos., Kawasaki T., Dev Growth Differ. June 1, 1999; 41 (3): 273-82.


Apextrin, a novel extracellular protein associated with larval ectoderm evolution in Heliocidaris erythrogramma., Haag ES., Dev Biol. July 1, 1999; 211 (1): 77-87.

???pagination.result.page??? 1 2 ???pagination.result.next???