Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (492) Expression Attributions Wiki
ECB-ANAT-145

Papers associated with ectoderm

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Mesomere-derived glutamate decarboxylase-expressing blastocoelar mesenchyme cells of sea urchin larvae., Katow H., Biol Open. January 15, 2014; 3 (1): 94-102.              


Branching out: origins of the sea urchin larval skeleton in development and evolution., McIntyre DC., Genesis. March 1, 2014; 52 (3): 173-85.


Eph-Ephrin signaling and focal adhesion kinase regulate actomyosin-dependent apical constriction of ciliary band cells., Krupke OA., Development. March 1, 2014; 141 (5): 1075-84.


Sea urchin neural development and the metazoan paradigm of neurogenesis., Burke RD., Genesis. March 1, 2014; 52 (3): 208-21.


Encoding regulatory state boundaries in the pregastrular oral ectoderm of the sea urchin embryo., Li E., Proc Natl Acad Sci U S A. March 11, 2014; 111 (10): E906-13.


A detailed staging scheme for late larval development in Strongylocentrotus purpuratus focused on readily-visible juvenile structures within the rudiment., Heyland A., BMC Dev Biol. May 19, 2014; 14 22.          


Molecular conservation of metazoan gut formation: evidence from expression of endomesoderm genes in Capitella teleta (Annelida)., Boyle MJ., Evodevo. June 17, 2014; 5 39.          


Migration of sea urchin primordial germ cells., Campanale JP., Dev Dyn. July 1, 2014; 243 (7): 917-27.


Restricted expression of karyopherin alpha mRNA in the sea urchin suggests a role in neurogenesis., Byrum CA., Gene Expr Patterns. September 1, 2014; 16 (1): 51-60.


Specification to biomineralization: following a single cell type as it constructs a skeleton., Lyons DC., Integr Comp Biol. October 1, 2014; 54 (4): 723-33.


Modular evolution of DNA-binding preference of a Tbrain transcription factor provides a mechanism for modifying gene regulatory networks., Cheatle Jarvela AM., Mol Biol Evol. October 1, 2014; 31 (10): 2672-88.            


bicaudal-C is required for the formation of anterior neurogenic ectoderm in the sea urchin embryo., Yaguchi S., Sci Rep. October 31, 2014; 4 6852.            


Specific functions of the Wnt signaling system in gene regulatory networks throughout the early sea urchin embryo., Cui M., Proc Natl Acad Sci U S A. November 25, 2014; 111 (47): E5029-38.


Manipulation of developing juvenile structures in purple sea urchins (Strongylocentrotus purpuratus) by morpholino injection into late stage larvae., Heyland A., PLoS One. December 1, 2014; 9 (12): e113866.              


Early asymmetric cues triggering the dorsal/ventral gene regulatory network of the sea urchin embryo., Cavalieri V., Elife. December 2, 2014; 3 e04664.                            


A computational model for BMP movement in sea urchin embryos., van Heijster P., J Theor Biol. December 21, 2014; 363 277-89.


Echinoderm conundrums: Hox genes, heterochrony, and an excess of mouths., Lacalli T., Evodevo. December 22, 2014; 5 (1): 46.  


Development of ciliary bands in larvae of the living isocrinid sea lily Metacrinus rotundus., Amemiya S., Acta Zool. January 1, 2015; 96 (1): 36-43.          


Multispectral labeling of embryonic cells with lipophilic carbocyanine dyes., Volnoukhin M., Mol Reprod Dev. January 1, 2015; 82 (7-8): 619-24.


Neurogenesis in directly and indirectly developing enteropneusts: of nets and cords., Kaul-Strehlow S., Org Divers Evol. January 1, 2015; 15 (2): 405-422.              


Molecular characterization of the apical organ of the anthozoan Nematostella vectensis., Sinigaglia C., Dev Biol. February 1, 2015; 398 (1): 120-33.                        


A cnidarian homologue of an insect gustatory receptor functions in developmental body patterning., Saina M., Nat Commun. February 18, 2015; 6 6243.          


Late Alk4/5/7 signaling is required for anterior skeletal patterning in sea urchin embryos., Piacentino ML., Development. March 1, 2015; 142 (5): 943-52.


Geometric control of ciliated band regulatory states in the sea urchin embryo., Barsi JC., Development. March 1, 2015; 142 (5): 953-61.


Expession patterns of mesenchyme specification genes in two distantly related echinoids, Glyptocidaris crenularis and Echinocardium cordatum., Yamazaki A., Gene Expr Patterns. March 1, 2015; 17 (2): 87-97.


Ca²⁺ influx-linked protein kinase C activity regulates the β-catenin localization, micromere induction signalling and the oral-aboral axis formation in early sea urchin embryos., Yazaki I., Zygote. June 1, 2015; 23 (3): 426-46.                


Logics and properties of a genetic regulatory program that drives embryonic muscle development in an echinoderm., Andrikou C., Elife. July 28, 2015; 4                                       


Comparative Study of Regulatory Circuits in Two Sea Urchin Species Reveals Tight Control of Timing and High Conservation of Expression Dynamics., Gildor T., PLoS Genet. July 31, 2015; 11 (7): e1005435.          


Carbonic anhydrase inhibition blocks skeletogenesis and echinochrome production in Paracentrotus lividus and Heliocidaris tuberculata embryos and larvae., Zito F., Dev Growth Differ. September 1, 2015; 57 (7): 507-14.


The Maternal Maverick/GDF15-like TGF-β Ligand Panda Directs Dorsal-Ventral Axis Formation by Restricting Nodal Expression in the Sea Urchin Embryo., Haillot E., PLoS Biol. September 9, 2015; 13 (9): e1002247.                      


Deployment of a retinal determination gene network drives directed cell migration in the sea urchin embryo., Martik ML., Elife. September 24, 2015; 4                               


A deuterostome origin of the Spemann organiser suggested by Nodal and ADMPs functions in Echinoderms., Lapraz F., Nat Commun. October 1, 2015; 6 8434.                    


H(+)/K(+) ATPase activity is required for biomineralization in sea urchin embryos., Schatzberg D., Dev Biol. October 15, 2015; 406 (2): 259-70.


microRNA-31 modulates skeletal patterning in the sea urchin embryo., Stepicheva NA., Development. November 1, 2015; 142 (21): 3769-80.


Genome-wide assessment of differential effector gene use in embryogenesis., Barsi JC., Development. November 15, 2015; 142 (22): 3892-901.


Hemichordate genomes and deuterostome origins., Simakov O., Nature. November 26, 2015; 527 (7579): 459-65.                          


cis-Regulatory control of the initial neurogenic pattern of onecut gene expression in the sea urchin embryo., Barsi JC., Dev Biol. January 1, 2016; 409 (1): 310-318.


Robustness and Accuracy in Sea Urchin Developmental Gene Regulatory Networks., Ben-Tabou de-Leon S., Front Genet. January 1, 2016; 7 16.    


Sea Urchin Morphogenesis., McClay DR., Curr Top Dev Biol. January 1, 2016; 117 15-29.


Immunohistochemical and ultrastructural properties of the larval ciliary band-associated strand in the sea urchin Hemicentrotus pulcherrimus., Katow H., Front Zool. January 1, 2016; 13 27.                  


Neurogenesis in sea urchin embryos and the diversity of deuterostome neurogenic mechanisms., Garner S., Development. January 15, 2016; 143 (2): 286-97.


Neurogenic gene regulatory pathways in the sea urchin embryo., Wei Z., Development. January 15, 2016; 143 (2): 298-305.


RNA-Seq identifies SPGs as a ventral skeletal patterning cue in sea urchins., Piacentino ML., Development. February 15, 2016; 143 (4): 703-14.


Comparative Developmental Transcriptomics Reveals Rewiring of a Highly Conserved Gene Regulatory Network during a Major Life History Switch in the Sea Urchin Genus Heliocidaris., Israel JW., PLoS Biol. March 1, 2016; 14 (3): e1002391.            


Zygotic LvBMP5-8 is required for skeletal patterning and for left-right but not dorsal-ventral specification in the sea urchin embryo., Piacentino ML., Dev Biol. April 1, 2016; 412 (1): 44-56.


Cooperative Wnt-Nodal Signals Regulate the Patterning of Anterior Neuroectoderm., Yaguchi J., PLoS Genet. April 21, 2016; 12 (4): e1006001.                


Wnt, Frizzled, and sFRP gene expression patterns during gastrulation in the starfish Patiria (Asterina) pectinifera., Kawai N., Gene Expr Patterns. May 1, 2016; 21 (1): 19-27.


Acquisition of the dorsal structures in chordate amphioxus., Morov AR., Open Biol. June 1, 2016; 6 (6):                 


Complexity of Yolk Proteins and Their Dynamics in the Sea Star Patiria miniata., Zazueta-Novoa V., Biol Bull. June 1, 2016; 230 (3): 209-19.


Expression of GATA and POU transcription factors during the development of the planktotrophic trochophore of the polychaete serpulid Hydroides elegans., Wong KS., Evol Dev. July 1, 2016; 18 (4): 254-66.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 ???pagination.result.next???