Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (492) Expression Attributions Wiki
ECB-ANAT-145

Papers associated with ectoderm

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Xenopus laevis Keller Explants., Sive HL., CSH Protoc. June 1, 2007; 2007 pdb.prot4749.


Cis-regulatory control of the nodal gene, initiator of the sea urchin oral ectoderm gene network., Nam J., Dev Biol. June 15, 2007; 306 (2): 860-9.


Ontogeny of the holothurian larval nervous system: evolution of larval forms., Bishop CD., Dev Genes Evol. August 1, 2007; 217 (8): 585-92.


Evolutionary modification of mouth position in deuterostomes., Christiaen L., Semin Cell Dev Biol. August 1, 2007; 18 (4): 502-11.


A rapid protocol for whole-mount in situ hybridization on Xenopus embryos., Monsoro-Burq AH., CSH Protoc. August 1, 2007; 2007 pdb.prot4809.


SpGataE, a Strongylocentrotus purpuratus ortholog of mammalian Gata4/5/6: protein expression, interaction with putative target gene spec2a, and identification of friend of Gata factor SpFog1., Kiyama T., Dev Genes Evol. September 1, 2007; 217 (9): 651-63.


Skeletogenesis by transfated secondary mesenchyme cells is dependent on extracellular matrix-ectoderm interactions in Paracentrotus lividus sea urchin embryos., Kiyomoto M., Dev Growth Differ. December 1, 2007; 49 (9): 731-41.


Ingression of primary mesenchyme cells of the sea urchin embryo: a precisely timed epithelial mesenchymal transition., Wu SY., Birth Defects Res C Embryo Today. December 1, 2007; 81 (4): 241-52.


Coelomic expression of a novel bone morphogenetic protein in regenerating arms of the brittle star Amphiura filiformis., Bannister R., Dev Genes Evol. January 1, 2008; 218 (1): 33-8.


FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis [corrected] and regulate gastrulation during sea urchin development., Röttinger E., Development. January 1, 2008; 135 (2): 353-65.


Development of the nervous system in the brittle star Amphipholis kochii., Hirokawa T., Dev Genes Evol. January 1, 2008; 218 (1): 15-21.


A Wnt-FoxQ2-nodal pathway links primary and secondary axis specification in sea urchin embryos., Yaguchi S., Dev Cell. January 1, 2008; 14 (1): 97-107.


Spatio-temporal expression of a Netrin homolog in the sea urchin Hemicentrotus pulcherrimus (HpNetrin) during serotonergic axon extension., Katow H., Int J Dev Biol. January 1, 2008; 52 (8): 1077-88.


Compositional genome contexts affect gene expression control in sea urchin embryo., Mahmud AA., PLoS One. January 1, 2008; 3 (12): e4025.      


Muscle formation during embryogenesis of the polychaete Ophryotrocha diadema (Dorvilleidae) - new insights into annelid muscle patterns., Bergter A., Front Zool. January 2, 2008; 5 1.                


A conserved role for the nodal signaling pathway in the establishment of dorso-ventral and left-right axes in deuterostomes., Duboc V., J Exp Zool B Mol Dev Evol. January 15, 2008; 310 (1): 41-53.


Expression patterns of three Par-related genes in sea urchin embryos., Shiomi K., Gene Expr Patterns. May 1, 2008; 8 (5): 323-30.


Lefty acts as an essential modulator of Nodal activity during sea urchin oral-aboral axis formation., Duboc V., Dev Biol. August 1, 2008; 320 (1): 49-59.


Morphology and gene analysis of hybrids between two congeneric sea stars with different modes of development., Wakabayashi K., Biol Bull. August 1, 2008; 215 (1): 89-97.


cis-Regulatory sequences driving the expression of the Hbox12 homeobox-containing gene in the presumptive aboral ectoderm territory of the Paracentrotus lividus sea urchin embryo., Cavalieri V., Dev Biol. September 15, 2008; 321 (2): 455-69.


The surprising complexity of the transcriptional regulation of the spdri gene reveals the existence of new linkages inside sea urchin''s PMC and Oral Ectoderm Gene Regulatory Networks., Mahmud AA., Dev Biol. October 15, 2008; 322 (2): 425-34.


Exogenous hyalin and sea urchin gastrulation. Part III: biological activity of hyalin isolated from Lytechinus pictus embryos., Contreras A., Zygote. November 1, 2008; 16 (4): 355-61.


Respecification of ectoderm and altered Nodal expression in sea urchin embryos after cobalt and nickel treatment., Agca C., Mech Dev. January 1, 2009; 126 (5-6): 430-42.


Development of nervous systems to metamorphosis in feeding and non-feeding echinoid larvae, the transition from bilateral to radial symmetry., Katow H., Dev Genes Evol. February 1, 2009; 219 (2): 67-77.


Axial patterning of the pentaradial adult echinoderm body plan., Minsuk SB., Dev Genes Evol. February 1, 2009; 219 (2): 89-101.


Gene regulatory network interactions in sea urchin endomesoderm induction., Sethi AJ., PLoS Biol. February 3, 2009; 7 (2): e1000029.                        


Nodal signalling is involved in left-right asymmetry in snails., Grande C., Nature. February 19, 2009; 457 (7232): 1007-11.      


Expression patterns of wnt8 orthologs in two sand dollar species with different developmental modes., Nakata H., Gene Expr Patterns. March 1, 2009; 9 (3): 152-7.


Neural development of the brittlestar Amphiura filiformis., Dupont S., Dev Genes Evol. March 1, 2009; 219 (3): 159-66.


The sea urchin animal pole domain is a Six3-dependent neurogenic patterning center., Wei Z., Development. April 1, 2009; 136 (7): 1179-89.


Gene regulatory networks for ectoderm specification in sea urchin embryos., Su YH., Biochim Biophys Acta. April 1, 2009; 1789 (4): 261-7.


Chordin is required for neural but not axial development in sea urchin embryos., Bradham CA., Dev Biol. April 15, 2009; 328 (2): 221-33.


A perturbation model of the gene regulatory network for oral and aboral ectoderm specification in the sea urchin embryo., Su YH., Dev Biol. May 15, 2009; 329 (2): 410-21.


Fluorescent in situ hybridization reveals multiple expression domains for SpBrn1/2/4 and identifies a unique ectodermal cell type that co-expresses the ParaHox gene SpLox., Cole AG., Gene Expr Patterns. June 1, 2009; 9 (5): 324-8.


Oral-aboral axis specification in the sea urchin embryo III. Role of mitochondrial redox signaling via H2O2., Coffman JA., Dev Biol. June 1, 2009; 330 (1): 123-30.


Sniffing out new data and hypotheses on the form, function, and evolution of the echinopluteus post-oral vibratile lobe., Bishop CD., Biol Bull. June 1, 2009; 216 (3): 307-21.


Reduced O2 and elevated ROS in sea urchin embryos leads to defects in ectoderm differentiation., Agca C., Dev Dyn. July 1, 2009; 238 (7): 1777-87.


Ernest Everett Just, Johannes Holtfreter, and the origin of certain concepts in embryo morphogenesis., Byrnes WM., Mol Reprod Dev. October 1, 2009; 76 (10): 912-21.


Evolutionary modification of T-brain (tbr) expression patterns in sand dollar., Minemura K., Gene Expr Patterns. October 1, 2009; 9 (7): 468-74.


Cdc42- and IRSp53-dependent contractile filopodia tether presumptive lens and retina to coordinate epithelial invagination., Chauhan BK., Development. November 1, 2009; 136 (21): 3657-67.


Patterning of the dorsal-ventral axis in echinoderms: insights into the evolution of the BMP-chordin signaling network., Lapraz F., PLoS Biol. November 1, 2009; 7 (11): e1000248.                        


Nervous system development of two crinoid species, the sea lily Metacrinus rotundus and the feather star Oxycomanthus japonicus., Nakano H., Dev Genes Evol. December 1, 2009; 219 (11-12): 565-76.


Nodal and BMP2/4 pattern the mesoderm and endoderm during development of the sea urchin embryo., Duboc V., Development. January 1, 2010; 137 (2): 223-35.


Spatiotemporal expression pattern of an encephalopsin orthologue of the sea urchin Hemicentrotus pulcherrimus during early development, and its potential role in larval vertical migration., Ooka S., Dev Growth Differ. February 1, 2010; 52 (2): 195-207.


Distinct embryotoxic effects of lithium appeared in a new assessment model of the sea urchin: the whole embryo assay and the blastomere culture assay., Kiyomoto M., Ecotoxicology. March 1, 2010; 19 (3): 563-70.


Embryonic, larval, and juvenile development of the sea biscuit Clypeaster subdepressus (Echinodermata: Clypeasteroida)., Vellutini BC., PLoS One. March 22, 2010; 5 (3): e9654.                                


The gene regulatory network basis of the "community effect," and analysis of a sea urchin embryo example., Bolouri H., Dev Biol. April 15, 2010; 340 (2): 170-8.


Pl-nectin, a discoidin family member, is a ligand for betaC integrins in the sea urchin embryo., Zito F., Matrix Biol. June 1, 2010; 29 (5): 341-5.


Development of a dopaminergic system in sea urchin embryos and larvae., Katow H., J Exp Biol. August 15, 2010; 213 (Pt 16): 2808-19.


TGFβ signaling positions the ciliary band and patterns neurons in the sea urchin embryo., Yaguchi S., Dev Biol. November 1, 2010; 347 (1): 71-81.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 ???pagination.result.next???