Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (492) Expression Attributions Wiki
ECB-ANAT-145

Papers associated with ectoderm

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

SpHnf6, a transcription factor that executes multiple functions in sea urchin embryogenesis., Otim O., Dev Biol. September 15, 2004; 273 (2): 226-43.


Creation of cis-regulatory elements during sea urchin evolution by co-option and optimization of a repetitive sequence adjacent to the spec2a gene., Dayal S., Dev Biol. September 15, 2004; 273 (2): 436-53.


Behavior of pigment cells closely correlates the manner of gastrulation in sea urchin embryos., Takata H., Zoolog Sci. October 1, 2004; 21 (10): 1025-35.


Molecular heterotopy in the expression of Brachyury orthologs in order Clypeasteroida (irregular sea urchins) and order Echinoida (regular sea urchins)., Hibino T., Dev Genes Evol. November 1, 2004; 214 (11): 546-58.


Co-option of an oral-aboral patterning mechanism to control left-right differentiation: the direct-developing sea urchin Heliocidaris erythrogramma is sinistralized, not ventralized, by NiCl2., Minsuk SB., Evol Dev. January 1, 2005; 7 (4): 289-300.


Dissociation of expression patterns of homeodomain transcription factors in the evolution of developmental mode in the sea urchins Heliocidaris tuberculata and H. erythrogramma., Wilson KA., Evol Dev. January 1, 2005; 7 (5): 401-15.


Major regulatory factors in the evolution of development: the roles of goosecoid and Msx in the evolution of the direct-developing sea urchin Heliocidaris erythrogramma., Wilson KA., Evol Dev. January 1, 2005; 7 (5): 416-28.


The pre-nervous serotonergic system of developing sea urchin embryos and larvae: pharmacologic and immunocytochemical evidence., Buznikov GA., Neurochem Res. January 1, 2005; 30 (6-7): 825-37.


Expression of AmHNF6, a sea star orthologue of a transcription factor with multiple distinct roles in sea urchin development., Otim O., Gene Expr Patterns. February 1, 2005; 5 (3): 381-6.


SoxB1 downregulation in vegetal lineages of sea urchin embryos is achieved by both transcriptional repression and selective protein turnover., Angerer LM., Development. March 1, 2005; 132 (5): 999-1008.


Fibrous component of the blastocoelic extracellular matrix shapes epithelia in concert with mesenchyme cells in starfish embryos., Kaneko H., Dev Dyn. April 1, 2005; 232 (4): 915-27.


Strongylocentrotus purpuratus transcription factor GATA-E binds to and represses transcription at an Otx-Goosecoid cis-regulatory element within the aboral ectoderm-specific spec2a enhancer., Kiyama T., Dev Biol. April 15, 2005; 280 (2): 436-47.


From larval bodies to adult body plans: patterning the development of the presumptive adult ectoderm in the sea urchin larva., Minsuk SB., Dev Genes Evol. August 1, 2005; 215 (8): 383-92.


Structure, expression, and transcriptional regulation of the Strongylocentrotus franciscanus spec gene family encoding intracellular calcium-binding proteins., Villinski JT., Dev Genes Evol. August 1, 2005; 215 (8): 410-22.


Developmental potential of small micromeres in sea urchin embryos., Kurihara H., Zoolog Sci. August 1, 2005; 22 (8): 845-52.


Induction and the Turing-Child field in development., Schiffmann Y., Prog Biophys Mol Biol. September 1, 2005; 89 (1): 36-92.


Identification of cis-regulatory elements involved in transcriptional regulation of the sea urchin SpFoxB gene., Fung ES., Dev Growth Differ. September 1, 2005; 47 (7): 461-70.


Nodal signaling and the evolution of deuterostome gastrulation., Chea HK., Dev Dyn. October 1, 2005; 234 (2): 269-78.


Canonical Notch signaling is dispensable for early cell fate specifications in mammals., Shi S., Mol Cell Biol. November 1, 2005; 25 (21): 9503-8.


cis-Regulatory inputs of the wnt8 gene in the sea urchin endomesoderm network., Minokawa T., Dev Biol. December 15, 2005; 288 (2): 545-58.


Larval ectoderm, organizational homology, and the origins of evolutionary novelty., Love AC., J Exp Zool B Mol Dev Evol. January 15, 2006; 306 (1): 18-34.


Subequatorial cytoplasm plays an important role in ectoderm patterning in the sea urchin embryo., Kominami T., Dev Growth Differ. February 1, 2006; 48 (2): 101-15.


CBFbeta is a facultative Runx partner in the sea urchin embryo., Robertson AJ., BMC Biol. February 9, 2006; 4 4.            


Nervous system development of the sea cucumber Stichopus japonicus., Nakano H., Dev Biol. April 1, 2006; 292 (1): 205-12.


Embryonic expression of engrailed in sea urchins., Yaguchi S., Gene Expr Patterns. June 1, 2006; 6 (5): 566-71.


Specification of ectoderm restricts the size of the animal plate and patterns neurogenesis in sea urchin embryos., Yaguchi S., Development. June 1, 2006; 133 (12): 2337-46.


Good eaters, poor swimmers: compromises in larval form., Strathmann RR., Integr Comp Biol. June 1, 2006; 46 (3): 312-22.


Hindgut specification and cell-adhesion functions of Sphox11/13b in the endoderm of the sea urchin embryo., Arenas-Mena C., Dev Growth Differ. September 1, 2006; 48 (7): 463-72.


Endo16 is required for gastrulation in the sea urchin Lytechinus variegatus., Romano LA., Dev Growth Differ. October 1, 2006; 48 (8): 487-97.


Expression pattern of three putative RNA-binding proteins during early development of the sea urchin Paracentrotus lividus., Röttinger E., Gene Expr Patterns. October 1, 2006; 6 (8): 864-72.


Repression of mesodermal fate by foxa, a key endoderm regulator of the sea urchin embryo., Oliveri P., Development. November 1, 2006; 133 (21): 4173-81.


Larval arm resorption proceeds concomitantly with programmed cell death during metamorphosis of the sea urchin Hemicentrotus pulcherrimus., Sato Y., Cell Tissue Res. December 1, 2006; 326 (3): 851-60.


Genetic organization and embryonic expression of the ParaHox genes in the sea urchin S. purpuratus: insights into the relationship between clustering and colinearity., Arnone MI., Dev Biol. December 1, 2006; 300 (1): 63-73.


Expression patterns of Hox genes in larvae of the sea lily Metacrinus rotundus., Hara Y., Dev Genes Evol. December 1, 2006; 216 (12): 797-809.


RTK and TGF-beta signaling pathways genes in the sea urchin genome., Lapraz F., Dev Biol. December 1, 2006; 300 (1): 132-52.


Phylogenetic correspondence of the body axes in bilaterians is revealed by the right-sided expression of Pitx genes in echinoderm larvae., Hibino T., Dev Growth Differ. December 1, 2006; 48 (9): 587-95.


Regulatory sequences driving expression of the sea urchin Otp homeobox gene in oral ectoderm cells., Cavalieri V., Gene Expr Patterns. January 1, 2007; 7 (1-2): 124-30.


Molecular paleoecology: using gene regulatory analysis to address the origins of complex life cycles in the late Precambrian., Dunn EF., Evol Dev. January 1, 2007; 9 (1): 10-24.


Gene expression patterns in a novel animal appendage: the sea urchin pluteus arm., Love AC., Evol Dev. January 1, 2007; 9 (1): 51-68.


Developmental origin of the adult nervous system in a holothurian: an attempt to unravel the enigma of neurogenesis in echinoderms., Mashanov VS., Evol Dev. January 1, 2007; 9 (3): 244-56.


A global view of gene expression in lithium and zinc treated sea urchin embryos: new components of gene regulatory networks., Poustka AJ., Genome Biol. January 1, 2007; 8 (5): R85.                


Apical organs in echinoderm larvae: insights into larval evolution in the Ambulacraria., Byrne M., Evol Dev. January 1, 2007; 9 (5): 432-45.


Serotonin stimulates [Ca2+]i elevation in ciliary ectodermal cells of echinoplutei through a serotonin receptor cell network in the blastocoel., Katow H., J Exp Biol. February 1, 2007; 210 (Pt 3): 403-12.


Sp-Smad2/3 mediates patterning of neurogenic ectoderm by nodal in the sea urchin embryo., Yaguchi S., Dev Biol. February 15, 2007; 302 (2): 494-503.


The Snail repressor is required for PMC ingression in the sea urchin embryo., Wu SY., Development. March 1, 2007; 134 (6): 1061-70.


Time and extent of ciliary response to particles in a non-filtering feeding mechanism., Strathmann RR., Biol Bull. April 1, 2007; 212 (2): 93-103.


Development of nitric oxide synthase-defined neurons in the sea urchin larval ciliary band and evidence for a chemosensory function during metamorphosis., Bishop CD., Dev Dyn. June 1, 2007; 236 (6): 1535-46.


Localized VEGF signaling from ectoderm to mesenchyme cells controls morphogenesis of the sea urchin embryo skeleton., Duloquin L., Development. June 1, 2007; 134 (12): 2293-302.


Transplantation of Xenopus laevis Lens Ectoderm., Sive HL., CSH Protoc. June 1, 2007; 2007 pdb.prot4751.


Xenopus laevis Einstecks., Sive HL., CSH Protoc. June 1, 2007; 2007 pdb.prot4750.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 ???pagination.result.next???