Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (492) Expression Attributions Wiki
ECB-ANAT-145

Papers associated with ectoderm

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Regulative specification of ectoderm in skeleton disrupted sea urchin embryos treated with monoclonal antibody to Pl-nectin., Zito F., Dev Growth Differ. October 1, 2000; 42 (5): 499-506.


Transcriptional regulation of the gene for epidermal growth factor-like peptides in sea urchin embryos., Yamasu K., Int J Dev Biol. October 1, 2000; 44 (7): 777-84.


Cellular basis of gastrulation in the sand dollar Scaphechinus mirabilis., Kominami T., Biol Bull. December 1, 2000; 199 (3): 287-97.


CAAT sites are required for the activation of the H. pulcherrimus Ars gene by Otx., Kiyama T., Dev Genes Evol. December 1, 2000; 210 (12): 583-90.


Syntaxin, VAMP, and Rab3 are selectively expressed during sea urchin embryogenesis., Conner SD., Mol Reprod Dev. January 1, 2001; 58 (1): 22-9.


Wnt gene expression in sea urchin development: heterochronies associated with the evolution of developmental mode., Ferkowicz MJ., Evol Dev. January 1, 2001; 3 (1): 24-33.


Expression patterns of HNK-1 carbohydrate and serotonin in sea urchin, amphioxus, and lamprey, with reference to the possible evolutionary origin of the neural crest., Morikawa K., Zoology (Jena). January 1, 2001; 104 (2): 81-90.


Deuterostome evolution: early development in the enteropneust hemichordate, Ptychodera flava., Henry JQ., Evol Dev. January 1, 2001; 3 (6): 375-90.


Regulating potential in development of a direct developing echinoid, Peronella japonica., Kitazawa C., Dev Growth Differ. February 1, 2001; 43 (1): 73-82.


Ca(2+) in specification of vegetal cell fate in early sea urchin embryos., Yazaki I., J Exp Biol. March 1, 2001; 204 (Pt 5): 823-34.


Correct Expression of spec2a in the sea urchin embryo requires both Otx and other cis-regulatory elements., Yuh CH., Dev Biol. April 15, 2001; 232 (2): 424-38.


Ectoderm exerts the driving force for gastrulation in the sand dollar Scaphechinus mirabilis., Takata H., Dev Growth Differ. June 1, 2001; 43 (3): 265-74.


LvNotch signaling plays a dual role in regulating the position of the ectoderm-endoderm boundary in the sea urchin embryo., Sherwood DR., Development. June 1, 2001; 128 (12): 2221-32.


An RGDS peptide-binding receptor, FR-1R, localizes to the basal side of the ectoderm and to primary mesenchyme cells in sand dollar embryos., Katow H., Dev Growth Differ. October 1, 2001; 43 (5): 601-10.


Sea urchin goosecoid function links fate specification along the animal-vegetal and oral-aboral embryonic axes., Angerer LM., Development. November 1, 2001; 128 (22): 4393-404.


The role of Brachyury (T) during gastrulation movements in the sea urchin Lytechinus variegatus., Gross JM., Dev Biol. November 1, 2001; 239 (1): 132-47.


Behavior of pigment cells in gastrula-stage embryos of Hemicentrotus pulcherrimus and Scaphechinus mirabilis., Kominami T., Dev Growth Differ. December 1, 2001; 43 (6): 699-707.


Molecular patterning along the sea urchin animal-vegetal axis., Brandhorst BP., Int Rev Cytol. January 1, 2002; 213 183-232.


Identification and characterization of bone morphogenetic protein 2/4 gene from the starfish Archaster typicus., Shih LJ., Comp Biochem Physiol B Biochem Mol Biol. February 1, 2002; 131 (2): 143-51.


Functional characterization of Ets-binding sites in the sea urchin embryo: three base pair conversions redirect expression from mesoderm to ectoderm and endoderm., Consales C., Gene. April 3, 2002; 287 (1-2): 75-81.


Ectoderm gene activation in sea urchin embryos mediated by the CCAAT-binding factor., Li X., Differentiation. May 1, 2002; 70 (2-3): 109-19.


Patchy interspecific sequence similarities efficiently identify positive cis-regulatory elements in the sea urchin., Yuh CH., Dev Biol. June 1, 2002; 246 (1): 148-61.


Pattern formation in a pentameral animal: induction of early adult rudiment development in sea urchins., Minsuk SB., Dev Biol. July 15, 2002; 247 (2): 335-50.


The expression of SpRunt during sea urchin embryogenesis., Robertson AJ., Mech Dev. September 1, 2002; 117 (1-2): 327-30.


Physiological and induced apoptosis in sea urchin larvae undergoing metamorphosis., Roccheri MC., Int J Dev Biol. September 1, 2002; 46 (6): 801-6.


T-brain homologue (HpTb) is involved in the archenteron induction signals of micromere descendant cells in the sea urchin embryo., Fuchikami T., Development. November 1, 2002; 129 (22): 5205-16.


Behavior and differentiation process of pigment cells in a tropical sea urchin Echinometra mathaei., Takata H., Dev Growth Differ. January 1, 2003; 45 (5-6): 473-83.


Patterning the sea urchin embryo: gene regulatory networks, signaling pathways, and cellular interactions., Angerer LM., Curr Top Dev Biol. January 1, 2003; 53 159-98.


Utilization of a particle gun DNA introduction system for the analysis of cis-regulatory elements controlling the spatial expression pattern of the arylsulfatase gene (HpArs) in sea urchin embryos., Kurita M., Dev Genes Evol. February 1, 2003; 213 (1): 44-9.


Primary mesenchyme cell patterning during the early stages following ingression., Peterson RE., Dev Biol. February 1, 2003; 254 (1): 68-78.


LvTbx2/3: a T-box family transcription factor involved in formation of the oral/aboral axis of the sea urchin embryo., Gross JM., Development. May 1, 2003; 130 (9): 1989-99.


Coquillette, a sea urchin T-box gene of the Tbx2 subfamily, is expressed asymmetrically along the oral-aboral axis of the embryo and is involved in skeletogenesis., Croce J., Mech Dev. May 1, 2003; 120 (5): 561-72.


Spdeadringer, a sea urchin embryo gene required separately in skeletogenic and oral ectoderm gene regulatory networks., Amore G., Dev Biol. September 1, 2003; 261 (1): 55-81.


Characterization of the upstream region that regulates the transcription of the gene for the precursor to EGF-related peptides, exogastrula-inducing peptides, of the sea urchin Anthocidaris crassispina., Horii K., Comp Biochem Physiol B Biochem Mol Biol. September 1, 2003; 136 (1): 15-26.


Impairing Otp homeodomain function in oral ectoderm cells affects skeletogenesis in sea urchin embryos., Cavalieri V., Dev Biol. October 1, 2003; 262 (1): 107-18.


Expression and function of a starfish Otx ortholog, AmOtx: a conserved role for Otx proteins in endoderm development that predates divergence of the eleutherozoa., Hinman VF., Mech Dev. October 1, 2003; 120 (10): 1165-76.


Expression of univin, a TGF-beta growth factor, requires ectoderm-ECM interaction and promotes skeletal growth in the sea urchin embryo., Zito F., Dev Biol. December 1, 2003; 264 (1): 217-27.


Evolution of OTP-independent larval skeleton patterning in the direct-developing sea urchin, Heliocidaris erythrogramma., Zhou N., J Exp Zool B Mol Dev Evol. December 15, 2003; 300 (1): 58-71.


Divergent patterns of neural development in larval echinoids and asteroids., Nakajima Y., Evol Dev. January 1, 2004; 6 (2): 95-104.


On the origin of the chordate central nervous system: expression of onecut in the sea urchin embryo., Poustka AJ., Evol Dev. January 1, 2004; 6 (4): 227-36.


Expression of an Otx gene in the adult rudiment and the developing central nervous system in the vestibula larva of the sea urchin Holopneustes purpurescens., Morris VB., Int J Dev Biol. February 1, 2004; 48 (1): 17-22.


Commitment and response to inductive signals of primary mesenchyme cells of the sea urchin embryo., Kiyomoto M., Dev Growth Differ. February 1, 2004; 46 (1): 107-14.


Nodal and BMP2/4 signaling organizes the oral-aboral axis of the sea urchin embryo., Duboc V., Dev Cell. March 1, 2004; 6 (3): 397-410.


cis-Regulatory activity of randomly chosen genomic fragments from the sea urchin., Cameron RA., Gene Expr Patterns. March 1, 2004; 4 (2): 205-13.


PI3K inhibitors block skeletogenesis but not patterning in sea urchin embryos., Bradham CA., Dev Dyn. April 1, 2004; 229 (4): 713-21.


The 5-HT receptor cell is a new member of secondary mesenchyme cell descendants and forms a major blastocoelar network in sea urchin larvae., Katow H., Mech Dev. April 1, 2004; 121 (4): 325-37.


Expression of an NK2 homeodomain gene in the apical ectoderm defines a new territory in the early sea urchin embryo., Takacs CM., Dev Biol. May 1, 2004; 269 (1): 152-64.


Evaluation of developmental phenotypes produced by morpholino antisense targeting of a sea urchin Runx gene., Coffman JA., BMC Biol. May 7, 2004; 2 6.      


Oral-aboral axis specification in the sea urchin embryo II. Mitochondrial distribution and redox state contribute to establishing polarity in Strongylocentrotus purpuratus., Coffman JA., Dev Biol. September 1, 2004; 273 (1): 160-71.


LiCl inhibits the establishment of left-right asymmetry in larvae of the direct-developing echinoid Peronella japonica., Kitazawa C., J Exp Zool A Comp Exp Biol. September 1, 2004; 301 (9): 707-17.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 ???pagination.result.next???