Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (271) Expression Attributions Wiki
ECB-ANAT-257

Papers associated with archenteron

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1 2 3 4 5 6 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Reduction of the archenteron in sea urchin larvae without typical animalization., Hörstadius S., Exp Cell Res. May 1, 1972; 72 (1): 140-4.


Cholinesterase in embryonic development., Drews U., Prog Histochem Cytochem. January 1, 1975; 7 (3): 1-52.


[Localization of cholinesterase-Activity during gastrulation of the sea urchin embryo]., Kocher-Becker U., Wilehm Roux Arch Dev Biol. June 1, 1975; 178 (2): 157-165.


3H-amino acid uptake and incorporation in sea urchin gastrulae and exogastrulae: an autoradiographic study., Karp GC., J Exp Zool. December 1, 1975; 194 (3): 535-45.


Action of crude and fractioned homogenates of the midgut gland of the sea hare Aplysia brasiliana Rang, 1828 on some cholinoceptive structures., de Freitas JC., Comp Biochem Physiol C. January 1, 1977; 56 (1): 57-61.


Coelomic pouch formation in the starfish Pisaster ochraceus (Echinodermata: Asteroidea)., Crawford BJ., J Morphol. July 1, 1978; 157 (1): 99-119.


Archenteron cells are responsible for the increase in ribosomal RNA synthesis in sea urchin gastrulae., Roccheri MC., Cell Biol Int Rep. December 1, 1979; 3 (9): 733-7.


Archenteron formation induced by ascorbate and alpha-ketoglutarate in sea urchin embryos kept in SO2- 4 -free artificial seawater., Mizoguchi H., Dev Biol. September 1, 1982; 93 (1): 119-25.


Glycoprotein synthesis and embryonic development., Lennarz WJ., CRC Crit Rev Biochem. January 1, 1983; 14 (4): 257-72.


Electron microscopy of extracellular materials during the development of a sea star, Patiria miniata (Echinodermata: Asteroidea)., Cameron RA., Cell Tissue Res. January 1, 1983; 234 (1): 193-200.


Degeneration of archenteron in sea urchin embryos caused by alpha,alpha''-dipyridyl., Mizoguchi H., Differentiation. January 1, 1983; 25 (2): 106-12.


Inhibition of archenteron formation by the inhibitors of prolyl hydroxylase in sea urchin embryos., Mizoguchi H., Cell Differ. April 1, 1983; 12 (4): 225-31.


The role of the basal lamina in mouth formation in the embryo of the starfish Pisaster ochraceus., Crawford B., J Morphol. May 1, 1983; 176 (2): 235-246.


Sulfated glycan present in the EDTA extract of Hemicentrotus embryos (mid-gastrula)., Akasaka K., Exp Cell Res. June 1, 1983; 146 (1): 177-85.


Allocation of mesendodermal cells during early embryogenesis in the starfish, Asterina pectinifera., Kominami T., J Embryol Exp Morphol. December 1, 1984; 84 177-90.


The origin of pigment cells in embryos of the sea urchin Strongylocentrotus purpuratus., Gibson AW., Dev Biol. February 1, 1985; 107 (2): 414-9.


Sequential expression of germ-layer specific molecules in the sea urchin embryo., Wessel GM., Dev Biol. October 1, 1985; 111 (2): 451-63.


Ultrastructural aspects of mouth formation in the starfish Pisaster ochraceus., Abed M., J Morphol. May 1, 1986; 188 (2): 239-250.


Cell behaviour during active cell rearrangement: evidence and speculations., Keller R., J Cell Sci Suppl. January 1, 1987; 8 369-93.


Archenteron elongation in the sea urchin embryo is a microtubule-independent process., Hardin JD., Dev Biol. May 1, 1987; 121 (1): 253-62.


Determination and morphogenesis in the sea urchin embryo., Wilt FH., Development. August 1, 1987; 100 (4): 559-76.


[Effect of diesel fuel hydrocarbons and cadmium on the development of sea urchin progeny]., Vashchenko MA., Ontogenez. January 1, 1988; 19 (1): 82-8.


The role of secondary mesenchyme cells during sea urchin gastrulation studied by laser ablation., Hardin J., Development. June 1, 1988; 103 (2): 317-24.


Three Strongylocentrotus purpuratus actin genes show correct cell-specific expression in hybrid embryos of S. purpuratus and Lytechinus pictus., Nisson PE., Development. February 1, 1989; 105 (2): 407-13.


Ontogeny and characterization of mesenchyme antigens of the sea urchin embryo., Tamboline CR., Dev Biol. November 1, 1989; 136 (1): 75-86.


Local shifts in position and polarized motility drive cell rearrangement during sea urchin gastrulation., Hardin J., Dev Biol. December 1, 1989; 136 (2): 430-45.


Gastrulation in the sea urchin is accompanied by the accumulation of an endoderm-specific mRNA., Wessel GM., Dev Biol. December 1, 1989; 136 (2): 526-36.


A hyaline layer protein that becomes localized to the oral ectoderm and foregut of sea urchin embryos., Coffman JA., Dev Biol. July 1, 1990; 140 (1): 93-104.


Target recognition by the archenteron during sea urchin gastrulation., Hardin J., Dev Biol. November 1, 1990; 142 (1): 86-102.


Structure, spatial, and temporal expression of two sea urchin metallothionein genes, SpMTB1 and SpMTA., Nemer M., J Biol Chem. April 5, 1991; 266 (10): 6586-93.


The structure and activities of echinonectin: a developmentally regulated cell adhesion glycoprotein with galactose-specific lectin activity., Alliegro MC., Glycobiology. June 1, 1991; 1 (3): 253-6.


Macromere cell fates during sea urchin development., Cameron RA., Development. December 1, 1991; 113 (4): 1085-91.


RAPID EVOLUTION OF GASTRULATION MECHANISMS IN A SEA URCHIN WITH LECITHOTROPHIC LARVAE., Wray GA., Evolution. December 1, 1991; 45 (8): 1741-1750.


Pattern formation during gastrulation in the sea urchin embryo., McClay DR., Dev Suppl. January 1, 1992; 33-41.


The Development and Larval Form of an Echinothurioid Echinoid, Asthenosoma ijimai, Revisited., Amemiya S., Biol Bull. February 1, 1992; 182 (1): 15-30.


Secondary mesenchyme of the sea urchin embryo: ontogeny of blastocoelar cells., Tamboline CR., J Exp Zool. April 15, 1992; 262 (1): 51-60.


The microbial environment of marine deposit-feeder guts characterized via microelectrodes., Plante C., Microb Ecol. May 1, 1992; 23 (3): 257-77.


The insertion of mesenchyme cells into the ectoderm during differentiation in Sea urchin embryos., Spiegel E., Rouxs Arch Dev Biol. October 1, 1992; 201 (6): 383-388.


Cell Movements during Gastrulation of Starfish Larvae., Kuraishi R., Biol Bull. October 1, 1992; 183 (2): 258-268.


Commitment along the dorsoventral axis of the sea urchin embryo is altered in response to NiCl2., Hardin J., Development. November 1, 1992; 116 (3): 671-85.


Transient, localized accumulation of alpha-spectrin during sea urchin morphogenesis., Wessel GM., Dev Biol. January 1, 1993; 155 (1): 161-71.


A complete second gut induced by transplanted micromeres in the sea urchin embryo., Ransick A., Science. February 19, 1993; 259 (5098): 1134-8.


A role for regulated secretion of apical extracellular matrix during epithelial invagination in the sea urchin., Lane MC., Development. March 1, 1993; 117 (3): 1049-60.


Expression of type IV collagen-degrading activity during early embryonal development in the sea urchin and the arresting effects of collagen synthesis inhibitors on embryogenesis., Karakiulakis G., J Cell Biochem. May 1, 1993; 52 (1): 92-106.


Later embryogenesis: regulatory circuitry in morphogenetic fields., Davidson EH., Development. July 1, 1993; 118 (3): 665-90.


Highly Derived Coelomic and Water-Vascular Morphogenesis in a Starfish with Pelagic Direct Development., Janies DA., Biol Bull. August 1, 1993; 185 (1): 56-76.


Ligand-dependent stimulation of introduced mammalian brain receptors alters spicule symmetry and other morphogenetic events in sea urchin embryos., Cameron RA., Mech Dev. January 1, 1994; 45 (1): 31-47.


An N-linked carbohydrate-containing extracellular matrix determinant plays a key role in sea urchin gastrulation., Ingersoll EP., Dev Biol. June 1, 1994; 163 (2): 351-66.


Complexity and organization of DNA-protein interactions in the 5''-regulatory region of an endoderm-specific marker gene in the sea urchin embryo., Yuh CH., Mech Dev. August 1, 1994; 47 (2): 165-86.


Endo16, a large multidomain protein found on the surface and ECM of endodermal cells during sea urchin gastrulation, binds calcium., Soltysik-Española M., Dev Biol. September 1, 1994; 165 (1): 73-85.

???pagination.result.page??? 1 2 3 4 5 6 ???pagination.result.next???