Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (92) Expression Attributions Wiki
ECB-ANAT-42

Papers associated with animal hemisphere

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2

Sort Newest To Oldest Sort Oldest To Newest

[Quantitative analysis of ligand-receptor interactions in physiological experiments]., Manukhin BN., Ross Fiziol Zh Im I M Sechenova. October 1, 1998; 84 (10): 1049-60.


GSK3beta/shaggy mediates patterning along the animal-vegetal axis of the sea urchin embryo., Emily-Fenouil F., Development. July 1, 1998; 125 (13): 2489-98.


A presumptive developmental role for a sea urchin cyclin B splice variant., Lozano JC., J Cell Biol. January 26, 1998; 140 (2): 283-93.                        


Identification and localization of a sea urchin Notch homologue: insights into vegetal plate regionalization and Notch receptor regulation., Sherwood DR., Development. September 1, 1997; 124 (17): 3363-74.


Polarized distribution of L-type calcium channels in early sea urchin embryos., Dale B., Am J Physiol. September 1, 1997; 273 (3 Pt 1): C822-5.


The allocation of early blastomeres to the ectoderm and endoderm is variable in the sea urchin embryo., Logan CY., Development. June 1, 1997; 124 (11): 2213-23.


Multiple signaling events specify ectoderm and pattern the oral-aboral axis in the sea urchin embryo., Wikramanayake AH., Development. January 1, 1997; 124 (1): 13-20.


Cloning, expression, and localization of a new member of a Paracentrotus lividus cell surface multigene family., Montana G., Mol Reprod Dev. May 1, 1996; 44 (1): 36-43.


Transient appearance of Strongylocentrotus purpuratus Otx in micromere nuclei: cytoplasmic retention of SpOtx possibly mediated through an alpha-actinin interaction., Chuang CK., Dev Genet. January 1, 1996; 19 (3): 231-7.


Autonomous and non-autonomous differentiation of ectoderm in different sea urchin species., Wikramanayake AH., Development. May 1, 1995; 121 (5): 1497-505.


Spatial distribution of two maternal messengers in Paracentrotus lividus during oogenesis and embryogenesis., Di Carlo M., Proc Natl Acad Sci U S A. June 7, 1994; 91 (12): 5622-6.


Presence of inositol 1,4,5-trisphosphate receptor, calreticulin, and calsequestrin in eggs of sea urchins and Xenopus laevis., Parys JB., Dev Biol. February 1, 1994; 161 (2): 466-76.


Expression of homeobox-containing genes in the sea urchin (Parancentrotus lividus) embryo., Di Bernardo M., Genetica. January 1, 1994; 94 (2-3): 141-50.


A complete second gut induced by transplanted micromeres in the sea urchin embryo., Ransick A., Science. February 19, 1993; 259 (5098): 1134-8.


Centrifugal elutriation of large fragile cells: isolation of RNA from fixed embryonic blastomeres., Nasir A., Anal Biochem. May 15, 1992; 203 (1): 22-6.


Spatial expression of the hatching enzyme gene in the sea urchin embryo., Lepage T., Dev Biol. March 1, 1992; 150 (1): 23-32.


Spatial and temporal expression pattern during sea urchin embryogenesis of a gene coding for a protease homologous to the human protein BMP-1 and to the product of the Drosophila dorsal-ventral patterning gene tolloid., Lepage T., Development. January 1, 1992; 114 (1): 147-63.


Cell movements during the initial phase of gastrulation in the sea urchin embryo., Burke RD., Dev Biol. August 1, 1991; 146 (2): 542-57.


Interactions of different vegetal cells with mesomeres during early stages of sea urchin development., Khaner O., Development. July 1, 1991; 112 (3): 881-90.


The use of confocal microscopy and STERECON reconstructions in the analysis of sea urchin embryonic cell division., Summers RG., J Electron Microsc Tech. May 1, 1991; 18 (1): 24-30.


Tissue-specific, temporal changes in cell adhesion to echinonectin in the sea urchin embryo., Burdsal CA., Dev Biol. April 1, 1991; 144 (2): 327-34.


The influence of cell interactions and tissue mass on differentiation of sea urchin mesomeres., Khaner O., Development. July 1, 1990; 109 (3): 625-34.


Range and stability of cell fate determination in isolated sea urchin blastomeres., Livingston BT., Development. March 1, 1990; 108 (3): 403-10.


Early inductive interactions are involved in restricting cell fates of mesomeres in sea urchin embryos., Henry JJ., Dev Biol. November 1, 1989; 136 (1): 140-53.


Embryonic cellular organization: differential restriction of fates as revealed by cell aggregates and lineage markers., Bernacki SH., J Exp Zool. August 1, 1989; 251 (2): 203-16.


Spec3: embryonic expression of a sea urchin gene whose product is involved in ectodermal ciliogenesis., Eldon ED., Genes Dev. December 1, 1987; 1 (10): 1280-92.


Histone modifications accompanying the onset of developmental commitment., Chambers SA., Dev Biol. December 1, 1987; 124 (2): 523-31.


Fourth cleavage of sea urchin blastomeres: microtubule patterns and myosin localization in equal and unequal cell divisions., Schroeder TE., Dev Biol. November 1, 1987; 124 (1): 9-22.


Determination and morphogenesis in the sea urchin embryo., Wilt FH., Development. August 1, 1987; 100 (4): 559-76.


Lineage and fate of each blastomere of the eight-cell sea urchin embryo., Cameron RA., Genes Dev. March 1, 1987; 1 (1): 75-85.


An altered series of ectodermal gene expressions accompanying the reversible suspension of differentiation in the zinc-animalized sea urchin embryo., Nemer M., Dev Biol. March 1, 1986; 114 (1): 214-24.


Patterns of cells and extracellular material of the sea urchin Lytechinus variegatus (Echinodermata; Echinoidea) embryo, from hatched blastula to late gastrula., Galileo DS., J Morphol. September 1, 1985; 185 (3): 387-402.


Three cell recognition changes accompany the ingression of sea urchin primary mesenchyme cells., Fink RD., Dev Biol. January 1, 1985; 107 (1): 66-74.


Micromere-specific cell surface proteins of 16-cell stage sea urchin embryos., De Simone DW., Exp Cell Res. January 1, 1985; 156 (1): 7-14.


Diffusible factors are responsible for differences in nuclease sensitivity among chromatins originating from different cell types., Chambers SA., Exp Cell Res. September 1, 1984; 154 (1): 213-23.


Structural differences in the chromatin from compartmentalized cells of the sea urchin embryo: differential nuclease accessibility of micromere chromatin., Cognetti G., Nucleic Acids Res. November 11, 1981; 9 (21): 5609-21.


Changes in cell surface charges during differentiation of isolated micromeres and mesomeres from sea urchin embryos., Sano K., Dev Biol. October 15, 1977; 60 (2): 404-15.


Distribution of concanavalin A receptor sites on specific populations of embryonic cells., Roberson M., Science. August 22, 1975; 189 (4203): 639-40.


[Morphological and biochemical characterization of the developmental stages of fertilized eggs inSphaerechinus granularis lam : I. Rearing, Morphology and determination of stages]., Müller WE., Wilhelm Roux Arch Entwickl Mech Org. June 1, 1971; 167 (2): 99-117.


The effect of temporary treatment of animal half embryos with lithium and the modification of this effect by simultaneous exposure to actinomycin D., de Angelis E., Wilhelm Roux Arch Entwickl Mech Org. September 1, 1970; 164 (3): 236-246.


Cytological and morphological studies of the action of lithium on the development of the sea urchin embryo., Hagström BE., Wilhelm Roux Arch Entwickl Mech Org. March 1, 1967; 158 (1): 1-12.


Protein synthesis in micromeres of the sea urchin egg., Spiegel M., Science. March 11, 1966; 151 (3715): 1233-4.

???pagination.result.page??? ???pagination.result.prev??? 1 2