Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (92) Expression Attributions Wiki
ECB-ANAT-42

Papers associated with animal hemisphere

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Protein synthesis in micromeres of the sea urchin egg., Spiegel M., Science. March 11, 1966; 151 (3715): 1233-4.


Cytological and morphological studies of the action of lithium on the development of the sea urchin embryo., Hagström BE., Wilhelm Roux Arch Entwickl Mech Org. March 1, 1967; 158 (1): 1-12.


The effect of temporary treatment of animal half embryos with lithium and the modification of this effect by simultaneous exposure to actinomycin D., de Angelis E., Wilhelm Roux Arch Entwickl Mech Org. September 1, 1970; 164 (3): 236-246.


[Morphological and biochemical characterization of the developmental stages of fertilized eggs inSphaerechinus granularis lam : I. Rearing, Morphology and determination of stages]., Müller WE., Wilhelm Roux Arch Entwickl Mech Org. June 1, 1971; 167 (2): 99-117.


Distribution of concanavalin A receptor sites on specific populations of embryonic cells., Roberson M., Science. August 22, 1975; 189 (4203): 639-40.


Changes in cell surface charges during differentiation of isolated micromeres and mesomeres from sea urchin embryos., Sano K., Dev Biol. October 15, 1977; 60 (2): 404-15.


Structural differences in the chromatin from compartmentalized cells of the sea urchin embryo: differential nuclease accessibility of micromere chromatin., Cognetti G., Nucleic Acids Res. November 11, 1981; 9 (21): 5609-21.


Diffusible factors are responsible for differences in nuclease sensitivity among chromatins originating from different cell types., Chambers SA., Exp Cell Res. September 1, 1984; 154 (1): 213-23.


Three cell recognition changes accompany the ingression of sea urchin primary mesenchyme cells., Fink RD., Dev Biol. January 1, 1985; 107 (1): 66-74.


Micromere-specific cell surface proteins of 16-cell stage sea urchin embryos., De Simone DW., Exp Cell Res. January 1, 1985; 156 (1): 7-14.


Patterns of cells and extracellular material of the sea urchin Lytechinus variegatus (Echinodermata; Echinoidea) embryo, from hatched blastula to late gastrula., Galileo DS., J Morphol. September 1, 1985; 185 (3): 387-402.


An altered series of ectodermal gene expressions accompanying the reversible suspension of differentiation in the zinc-animalized sea urchin embryo., Nemer M., Dev Biol. March 1, 1986; 114 (1): 214-24.


Lineage and fate of each blastomere of the eight-cell sea urchin embryo., Cameron RA., Genes Dev. March 1, 1987; 1 (1): 75-85.


Determination and morphogenesis in the sea urchin embryo., Wilt FH., Development. August 1, 1987; 100 (4): 559-76.


Fourth cleavage of sea urchin blastomeres: microtubule patterns and myosin localization in equal and unequal cell divisions., Schroeder TE., Dev Biol. November 1, 1987; 124 (1): 9-22.


Spec3: embryonic expression of a sea urchin gene whose product is involved in ectodermal ciliogenesis., Eldon ED., Genes Dev. December 1, 1987; 1 (10): 1280-92.


Histone modifications accompanying the onset of developmental commitment., Chambers SA., Dev Biol. December 1, 1987; 124 (2): 523-31.


Embryonic cellular organization: differential restriction of fates as revealed by cell aggregates and lineage markers., Bernacki SH., J Exp Zool. August 1, 1989; 251 (2): 203-16.


Early inductive interactions are involved in restricting cell fates of mesomeres in sea urchin embryos., Henry JJ., Dev Biol. November 1, 1989; 136 (1): 140-53.


Range and stability of cell fate determination in isolated sea urchin blastomeres., Livingston BT., Development. March 1, 1990; 108 (3): 403-10.


The influence of cell interactions and tissue mass on differentiation of sea urchin mesomeres., Khaner O., Development. July 1, 1990; 109 (3): 625-34.


Tissue-specific, temporal changes in cell adhesion to echinonectin in the sea urchin embryo., Burdsal CA., Dev Biol. April 1, 1991; 144 (2): 327-34.


The use of confocal microscopy and STERECON reconstructions in the analysis of sea urchin embryonic cell division., Summers RG., J Electron Microsc Tech. May 1, 1991; 18 (1): 24-30.


Interactions of different vegetal cells with mesomeres during early stages of sea urchin development., Khaner O., Development. July 1, 1991; 112 (3): 881-90.


Cell movements during the initial phase of gastrulation in the sea urchin embryo., Burke RD., Dev Biol. August 1, 1991; 146 (2): 542-57.


Spatial and temporal expression pattern during sea urchin embryogenesis of a gene coding for a protease homologous to the human protein BMP-1 and to the product of the Drosophila dorsal-ventral patterning gene tolloid., Lepage T., Development. January 1, 1992; 114 (1): 147-63.


Spatial expression of the hatching enzyme gene in the sea urchin embryo., Lepage T., Dev Biol. March 1, 1992; 150 (1): 23-32.


Centrifugal elutriation of large fragile cells: isolation of RNA from fixed embryonic blastomeres., Nasir A., Anal Biochem. May 15, 1992; 203 (1): 22-6.


A complete second gut induced by transplanted micromeres in the sea urchin embryo., Ransick A., Science. February 19, 1993; 259 (5098): 1134-8.


Expression of homeobox-containing genes in the sea urchin (Parancentrotus lividus) embryo., Di Bernardo M., Genetica. January 1, 1994; 94 (2-3): 141-50.


Presence of inositol 1,4,5-trisphosphate receptor, calreticulin, and calsequestrin in eggs of sea urchins and Xenopus laevis., Parys JB., Dev Biol. February 1, 1994; 161 (2): 466-76.


Spatial distribution of two maternal messengers in Paracentrotus lividus during oogenesis and embryogenesis., Di Carlo M., Proc Natl Acad Sci U S A. June 7, 1994; 91 (12): 5622-6.


Autonomous and non-autonomous differentiation of ectoderm in different sea urchin species., Wikramanayake AH., Development. May 1, 1995; 121 (5): 1497-505.


Transient appearance of Strongylocentrotus purpuratus Otx in micromere nuclei: cytoplasmic retention of SpOtx possibly mediated through an alpha-actinin interaction., Chuang CK., Dev Genet. January 1, 1996; 19 (3): 231-7.


Cloning, expression, and localization of a new member of a Paracentrotus lividus cell surface multigene family., Montana G., Mol Reprod Dev. May 1, 1996; 44 (1): 36-43.


Multiple signaling events specify ectoderm and pattern the oral-aboral axis in the sea urchin embryo., Wikramanayake AH., Development. January 1, 1997; 124 (1): 13-20.


The allocation of early blastomeres to the ectoderm and endoderm is variable in the sea urchin embryo., Logan CY., Development. June 1, 1997; 124 (11): 2213-23.


Identification and localization of a sea urchin Notch homologue: insights into vegetal plate regionalization and Notch receptor regulation., Sherwood DR., Development. September 1, 1997; 124 (17): 3363-74.


Polarized distribution of L-type calcium channels in early sea urchin embryos., Dale B., Am J Physiol. September 1, 1997; 273 (3 Pt 1): C822-5.


A presumptive developmental role for a sea urchin cyclin B splice variant., Lozano JC., J Cell Biol. January 26, 1998; 140 (2): 283-93.                        


GSK3beta/shaggy mediates patterning along the animal-vegetal axis of the sea urchin embryo., Emily-Fenouil F., Development. July 1, 1998; 125 (13): 2489-98.


[Quantitative analysis of ligand-receptor interactions in physiological experiments]., Manukhin BN., Ross Fiziol Zh Im I M Sechenova. October 1, 1998; 84 (10): 1049-60.


Timing of the potential of micromere-descendants in echinoid embryos to induce endoderm differentiation of mesomere-descendants., Minokawa T., Dev Growth Differ. October 1, 1999; 41 (5): 535-47.


SpSoxB1, a maternally encoded transcription factor asymmetrically distributed among early sea urchin blastomeres., Kenny AP., Development. December 1, 1999; 126 (23): 5473-83.


Studies on the cellular basis of morphogenesis in the sea urchin embryo. Directed movements of primary mesenchyme cells in normal and vegetalized larvae., Gustafson T., Exp Cell Res. December 15, 1999; 253 (2): 288-95.


Regulative potential to form an amniotic cavity in mesomeres of a direct developing echinoid, Peronella japonica., Kitazawa C., Zygote. January 1, 2000; 8 Suppl 1 S79.


A BMP pathway regulates cell fate allocation along the sea urchin animal-vegetal embryonic axis., Angerer LM., Development. March 1, 2000; 127 (5): 1105-14.


Deuterostome evolution: early development in the enteropneust hemichordate, Ptychodera flava., Henry JQ., Evol Dev. January 1, 2001; 3 (6): 375-90.


Change in the adhesive properties of blastomeres during early cleavage stages in sea urchin embryo., Masui M., Dev Growth Differ. February 1, 2001; 43 (1): 43-53.


Regulating potential in development of a direct developing echinoid, Peronella japonica., Kitazawa C., Dev Growth Differ. February 1, 2001; 43 (1): 73-82.

???pagination.result.page??? 1 2 ???pagination.result.next???