Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (281) Expression Attributions Wiki
ECB-ANAT-223

Papers associated with embryonic skeletogenic mesenchyme

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Extracellular matrix triggers a directed cell migratory response in sea urchin primary mesenchyme cells., Solursh M., Dev Biol. November 1, 1988; 130 (1): 397-401.


Sea urchin primary mesenchyme cells: ingression occurs independent of microtubules., Anstrom JA., Dev Biol. January 1, 1989; 131 (1): 269-75.


Immunogold detection of glycoprotein antigens in sea urchin embryos., Benson NC., Am J Anat. January 1, 1989; 185 (2-3): 177-82.


The isotopic effects of D2O in developing sea urchin eggs., Sumitro SB., Cell Struct Funct. February 1, 1989; 14 (1): 95-111.


Inhibitors of metalloendoproteases block spiculogenesis in sea urchin primary mesenchyme cells., Roe JL., Exp Cell Res. April 1, 1989; 181 (2): 542-50.


The accumulation and translation of a spicule matrix protein mRNA during sea urchin embryo development., Killian CE., Dev Biol. May 1, 1989; 133 (1): 148-56.


The expression of embryonic primary mesenchyme genes of the sea urchin, Strongylocentrotus purpuratus, in the adult skeletogenic tissues of this and other species of echinoderms., Drager BJ., Dev Biol. May 1, 1989; 133 (1): 14-23.


Electron microscopic studies on primary mesenchyme cell ingression and gastrulation in relation to vegetal pole cell behavior in sea urchin embryos., Amemiya S., Exp Cell Res. August 1, 1989; 183 (2): 453-62.


A calcium-binding, asparagine-linked oligosaccharide is involved in skeleton formation in the sea urchin embryo., Farach-Carson MC., J Cell Biol. September 1, 1989; 109 (3): 1289-99.


Autonomous expression of tissue-specific genes in dissociated sea urchin embryos., Stephens L., Development. October 1, 1989; 107 (2): 299-307.


Ontogeny and characterization of mesenchyme antigens of the sea urchin embryo., Tamboline CR., Dev Biol. November 1, 1989; 136 (1): 75-86.


Structure and developmental expression of a sea urchin fibrillar collagen gene., D'Alessio M., Proc Natl Acad Sci U S A. December 1, 1989; 86 (23): 9303-7.


Promoter structure and protein sequence of msp130, a lipid-anchored sea urchin glycoprotein., Parr BA., J Biol Chem. January 25, 1990; 265 (3): 1408-13.


The synthesis and secretion of collagen by cultured sea urchin micromeres., Benson S., Exp Cell Res. May 1, 1990; 188 (1): 141-6.


Cell interactions in the sea urchin embryo studied by fluorescence photoablation., Ettensohn CA., Science. June 1, 1990; 248 (4959): 1115-8.


Inhibition of glycoprotein processing blocks assembly of spicules during development of the sea urchin embryo., Kabakoff B., J Cell Biol. August 1, 1990; 111 (2): 391-400.


The regulation of primary mesenchyme cell patterning., Ettensohn CA., Dev Biol. August 1, 1990; 140 (2): 261-71.


A fibronectin-related synthetic peptide, Pro-Ala-Ser-Ser, inhibits fibronectin binding to the cell surface, fibronectin-promoted cell migration in vitro, and cell migration in vivo., Katow H., Exp Cell Res. September 1, 1990; 190 (1): 17-24.


Immunohistochemical localization of a tenascin-like extracellular matrix protein in sea urchin embryos., Anstrom JA., Rouxs Arch Dev Biol. November 1, 1990; 199 (3): 169-173.


Primary mesenchyme cell migration requires a chondroitin sulfate/dermatan sulfate proteoglycan., Lane MC., Dev Biol. February 1, 1991; 143 (2): 389-97.


Tissue-specific, temporal changes in cell adhesion to echinonectin in the sea urchin embryo., Burdsal CA., Dev Biol. April 1, 1991; 144 (2): 327-34.


The structure and activities of echinonectin: a developmentally regulated cell adhesion glycoprotein with galactose-specific lectin activity., Alliegro MC., Glycobiology. June 1, 1991; 1 (3): 253-6.


Role of the extracellular matrix in tissue-specific gene expression in the sea urchin embryo., Benson S., Mol Reprod Dev. July 1, 1991; 29 (3): 220-6.


Characterization and expression of a gene encoding a 30.6-kDa Strongylocentrotus purpuratus spicule matrix protein., George NC., Dev Biol. October 1, 1991; 147 (2): 334-42.


Primary mesenchyme cells of the sea urchin embryo require an autonomously produced, nonfibrillar collagen for spiculogenesis., Wessel GM., Dev Biol. November 1, 1991; 148 (1): 261-72.


Pattern formation during gastrulation in the sea urchin embryo., McClay DR., Dev Suppl. January 1, 1992; 33-41.


Cell interactions and mesodermal cell fates in the sea urchin embryo., Ettensohn CA., Dev Suppl. January 1, 1992; 43-51.


Spatial and temporal expression pattern during sea urchin embryogenesis of a gene coding for a protease homologous to the human protein BMP-1 and to the product of the Drosophila dorsal-ventral patterning gene tolloid., Lepage T., Development. January 1, 1992; 114 (1): 147-63.


Posttranscriptional regulation of ectoderm-specific gene expression in early sea urchin embryos., Gagnon ML., Development. February 1, 1992; 114 (2): 457-67.


Characterization of post-translational modifications common to three primary mesenchyme cell-specific glycoproteins involved in sea urchin embryonic skeleton formation., Kabakoff B., Dev Biol. April 1, 1992; 150 (2): 294-305.


Secondary mesenchyme of the sea urchin embryo: ontogeny of blastocoelar cells., Tamboline CR., J Exp Zool. April 15, 1992; 262 (1): 51-60.


An acid extract from dissociation medium of sea urchin embryos, induces mesenchyme differentiation., Dolo V., Cell Biol Int Rep. June 1, 1992; 16 (6): 517-32.


Preservation and visualization of the sea urchin embryo blastocoelic extracellular matrix., Cherr GN., Microsc Res Tech. June 15, 1992; 22 (1): 11-22.


Isolation and characterization of cDNA encoding a spicule matrix protein in Hemicentrotus pulcherrimus micromeres., Katoh-Fukui Y., Int J Dev Biol. September 1, 1992; 36 (3): 353-61.


The insertion of mesenchyme cells into the ectoderm during differentiation in Sea urchin embryos., Spiegel E., Rouxs Arch Dev Biol. October 1, 1992; 201 (6): 383-388.


Commitment along the dorsoventral axis of the sea urchin embryo is altered in response to NiCl2., Hardin J., Development. November 1, 1992; 116 (3): 671-85.


Microfilaments, cell shape changes, and the formation of primary mesenchyme in sea urchin embryos., Anstrom JA., J Exp Zool. December 1, 1992; 264 (3): 312-22.


Analysis of competence in cultured sea urchin micromeres., Page L., Exp Cell Res. December 1, 1992; 203 (2): 305-11.


Transient, localized accumulation of alpha-spectrin during sea urchin morphogenesis., Wessel GM., Dev Biol. January 1, 1993; 155 (1): 161-71.


Mesodermal cell interactions in the sea urchin embryo: properties of skeletogenic secondary mesenchyme cells., Ettensohn CA., Development. April 1, 1993; 117 (4): 1275-85.


Studies on the cellular pathway involved in assembly of the embryonic sea urchin spicule., Hwang SP., Exp Cell Res. April 1, 1993; 205 (2): 383-7.


Size regulation and morphogenesis: a cellular analysis of skeletogenesis in the sea urchin embryo., Ettensohn CA., Development. September 1, 1993; 119 (1): 155-67.


Cell-cell interactions regulate skeleton formation in the sea urchin embryo., Armstrong N., Development. November 1, 1993; 119 (3): 833-40.


Protein-DNA interactions at putative regulatory regions of two coordinately expressed genes, msp130 and PM27, during skeletogenesis in sea urchin embryos., Raman V., Int J Dev Biol. December 1, 1993; 37 (4): 499-507.


Characterization of a homolog of human bone morphogenetic protein 1 in the embryo of the sea urchin, Strongylocentrotus purpuratus., Hwang SP., Development. March 1, 1994; 120 (3): 559-68.


Skeletal pattern is specified autonomously by the primary mesenchyme cells in sea urchin embryos., Armstrong N., Dev Biol. April 1, 1994; 162 (2): 329-38.


Primary mesenchyme cell migration in the sea urchin embryo: distribution of directional cues., Malinda KM., Dev Biol. August 1, 1994; 164 (2): 562-78.


Genomic organization of a gene encoding the spicule matrix protein SM30 in the sea urchin Strongylocentrotus purpuratus., Akasaka K., J Biol Chem. August 12, 1994; 269 (32): 20592-8.


Selective inhibition of exoplasmic membrane fusion in echinoderm gametes with jaspisin, a novel antihatching substance isolated from a marine sponge., Ikegami S., J Biol Chem. September 16, 1994; 269 (37): 23262-7.


Formation of sea urchin primary mesenchyme: cell shape changes are independent of epithelial detachment., Anstrom JA., Rouxs Arch Dev Biol. December 1, 1994; 204 (2): 146-149.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 ???pagination.result.next???