Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (397) Expression Attributions Wiki
ECB-ANAT-14

Papers associated with digestive system

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1 2 3 4 5 6 7 8 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

AN AUTORADIOGRAPHIC INVESTIGATION OF TOOTH RENEWAL IN THE PURPLE SEA URCHIN (STRONGYLOCENTROTUS PURPURATUS)., HOLLAND ND., J Exp Zool. April 1, 1965; 158 275-81.


A light and electron microscopic investigation of the digestive system of the Ophiuroid ophiuroiderma panamensis (Brittle Star)., Schechter J., J Morphol. April 1, 1968; 124 (4): 451-81.


Reduction of the archenteron in sea urchin larvae without typical animalization., Hörstadius S., Exp Cell Res. May 1, 1972; 72 (1): 140-4.


Arylsulphatases and beta-glucuronidase in the digestive system of some echinoderms., Cornet D., Comp Biochem Physiol B. January 15, 1974; 47 (1): 45-52.


Ultrastructure and growth of the sea urchin tooth., Kniprath E., Calcif Tissue Res. March 29, 1974; 14 (3): 211-28.


Cholinesterase in embryonic development., Drews U., Prog Histochem Cytochem. January 1, 1975; 7 (3): 1-52.


[Localization of cholinesterase-Activity during gastrulation of the sea urchin embryo]., Kocher-Becker U., Wilehm Roux Arch Dev Biol. June 1, 1975; 178 (2): 157-165.


3H-amino acid uptake and incorporation in sea urchin gastrulae and exogastrulae: an autoradiographic study., Karp GC., J Exp Zool. December 1, 1975; 194 (3): 535-45.


The fine structure of the embryo during the gastrula stage of Comanthus japonica (Echinodermata: Crinoidea)., Holland ND., Tissue Cell. January 1, 1976; 8 (3): 491-510.


The form of the globiferous pedicellarial ossicles of the regular echinoid, Psammechinus miliaris Gmelin., Oldfield SC., Tissue Cell. January 1, 1976; 8 (1): 93-9.


Action of crude and fractioned homogenates of the midgut gland of the sea hare Aplysia brasiliana Rang, 1828 on some cholinoceptive structures., de Freitas JC., Comp Biochem Physiol C. January 1, 1977; 56 (1): 57-61.


STUDIES ON FUNCTIONAL MORPHOLOGY IN THE DIGESTIVE SYSTEM OF OREASTER RETICULATUS (L.) (ASTEROIDEA)., Anderson JM., Biol Bull. February 1, 1978; 154 (1): 1-14.


Coelomic pouch formation in the starfish Pisaster ochraceus (Echinodermata: Asteroidea)., Crawford BJ., J Morphol. July 1, 1978; 157 (1): 99-119.


Archenteron cells are responsible for the increase in ribosomal RNA synthesis in sea urchin gastrulae., Roccheri MC., Cell Biol Int Rep. December 1, 1979; 3 (9): 733-7.


Archenteron formation induced by ascorbate and alpha-ketoglutarate in sea urchin embryos kept in SO2- 4 -free artificial seawater., Mizoguchi H., Dev Biol. September 1, 1982; 93 (1): 119-25.


Glycoprotein synthesis and embryonic development., Lennarz WJ., CRC Crit Rev Biochem. January 1, 1983; 14 (4): 257-72.


Electron microscopy of extracellular materials during the development of a sea star, Patiria miniata (Echinodermata: Asteroidea)., Cameron RA., Cell Tissue Res. January 1, 1983; 234 (1): 193-200.


Degeneration of archenteron in sea urchin embryos caused by alpha,alpha''-dipyridyl., Mizoguchi H., Differentiation. January 1, 1983; 25 (2): 106-12.


Inhibition of archenteron formation by the inhibitors of prolyl hydroxylase in sea urchin embryos., Mizoguchi H., Cell Differ. April 1, 1983; 12 (4): 225-31.


The role of the basal lamina in mouth formation in the embryo of the starfish Pisaster ochraceus., Crawford B., J Morphol. May 1, 1983; 176 (2): 235-246.


Sulfated glycan present in the EDTA extract of Hemicentrotus embryos (mid-gastrula)., Akasaka K., Exp Cell Res. June 1, 1983; 146 (1): 177-85.


The structure of the larval nervous system of Pisaster ochraceus (Echinodermata: Asteroidea)., Burke RD., J Morphol. October 1, 1983; 178 (1): 23-35.


Allocation of mesendodermal cells during early embryogenesis in the starfish, Asterina pectinifera., Kominami T., J Embryol Exp Morphol. December 1, 1984; 84 177-90.


The origin of pigment cells in embryos of the sea urchin Strongylocentrotus purpuratus., Gibson AW., Dev Biol. February 1, 1985; 107 (2): 414-9.


Sequential expression of germ-layer specific molecules in the sea urchin embryo., Wessel GM., Dev Biol. October 1, 1985; 111 (2): 451-63.


Ultrastructural aspects of mouth formation in the starfish Pisaster ochraceus., Abed M., J Morphol. May 1, 1986; 188 (2): 239-250.


What do dissociated embryonic cells of the starfish, Asterina pectinifera, do to reconstruct bipinnaria larvae?, Yamanaka H., J Embryol Exp Morphol. June 1, 1986; 94 61-71.


Matrix proteins of the teeth of the sea urchin Lytechinus variegatus., Veis DJ., J Exp Zool. October 1, 1986; 240 (1): 35-46.


Cell behaviour during active cell rearrangement: evidence and speculations., Keller R., J Cell Sci Suppl. January 1, 1987; 8 369-93.


Chiropteran enamel structure., Lester KS., Scanning Microsc. March 1, 1987; 1 (1): 421-36.


Archenteron elongation in the sea urchin embryo is a microtubule-independent process., Hardin JD., Dev Biol. May 1, 1987; 121 (1): 253-62.


Determination and morphogenesis in the sea urchin embryo., Wilt FH., Development. August 1, 1987; 100 (4): 559-76.


[Effect of diesel fuel hydrocarbons and cadmium on the development of sea urchin progeny]., Vashchenko MA., Ontogenez. January 1, 1988; 19 (1): 82-8.


Ophiuroid Skeleton Ontogeny Reveals Homologies Among Skeletal Plates of Adults: A Study of Amphiura filiformis, Amphiura stimpsonii and Ophiophragmus filograneus (Echinodermata)., Hendler G., Biol Bull. February 1, 1988; 174 (1): 20-29.


The role of secondary mesenchyme cells during sea urchin gastrulation studied by laser ablation., Hardin J., Development. June 1, 1988; 103 (2): 317-24.


Three Strongylocentrotus purpuratus actin genes show correct cell-specific expression in hybrid embryos of S. purpuratus and Lytechinus pictus., Nisson PE., Development. February 1, 1989; 105 (2): 407-13.


Ontogeny and characterization of mesenchyme antigens of the sea urchin embryo., Tamboline CR., Dev Biol. November 1, 1989; 136 (1): 75-86.


Local shifts in position and polarized motility drive cell rearrangement during sea urchin gastrulation., Hardin J., Dev Biol. December 1, 1989; 136 (2): 430-45.


Gastrulation in the sea urchin is accompanied by the accumulation of an endoderm-specific mRNA., Wessel GM., Dev Biol. December 1, 1989; 136 (2): 526-36.


A hyaline layer protein that becomes localized to the oral ectoderm and foregut of sea urchin embryos., Coffman JA., Dev Biol. July 1, 1990; 140 (1): 93-104.


Target recognition by the archenteron during sea urchin gastrulation., Hardin J., Dev Biol. November 1, 1990; 142 (1): 86-102.


Structure, spatial, and temporal expression of two sea urchin metallothionein genes, SpMTB1 and SpMTA., Nemer M., J Biol Chem. April 5, 1991; 266 (10): 6586-93.


Choanocyte-like cells in the digestive system of the starfish Marthasterias glacialis (Echinodermata)., Martinez A., J Morphol. May 1, 1991; 208 (2): 215-225.


The structure and activities of echinonectin: a developmentally regulated cell adhesion glycoprotein with galactose-specific lectin activity., Alliegro MC., Glycobiology. June 1, 1991; 1 (3): 253-6.


Macromere cell fates during sea urchin development., Cameron RA., Development. December 1, 1991; 113 (4): 1085-91.


RAPID EVOLUTION OF GASTRULATION MECHANISMS IN A SEA URCHIN WITH LECITHOTROPHIC LARVAE., Wray GA., Evolution. December 1, 1991; 45 (8): 1741-1750.


Pattern formation during gastrulation in the sea urchin embryo., McClay DR., Dev Suppl. January 1, 1992; 33-41.


The Development and Larval Form of an Echinothurioid Echinoid, Asthenosoma ijimai, Revisited., Amemiya S., Biol Bull. February 1, 1992; 182 (1): 15-30.


Secondary mesenchyme of the sea urchin embryo: ontogeny of blastocoelar cells., Tamboline CR., J Exp Zool. April 15, 1992; 262 (1): 51-60.


The microbial environment of marine deposit-feeder guts characterized via microelectrodes., Plante C., Microb Ecol. May 1, 1992; 23 (3): 257-77.

???pagination.result.page??? 1 2 3 4 5 6 7 8 ???pagination.result.next???