Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (227) Expression Attributions Wiki
ECB-ANAT-124

Papers associated with micromere

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5

Sort Newest To Oldest Sort Oldest To Newest

Larval mesenchyme cell specification in the primitive echinoid occurs independently of the double-negative gate., Yamazaki A., Development. July 1, 2014; 141 (13): 2669-79.


Specification to biomineralization: following a single cell type as it constructs a skeleton., Lyons DC., Integr Comp Biol. October 1, 2014; 54 (4): 723-33.


Mechanisms of the epithelial-to-mesenchymal transition in sea urchin embryos., Katow H., Tissue Barriers. January 1, 2015; 3 (4): e1059004.


Ca²⁺ influx-linked protein kinase C activity regulates the β-catenin localization, micromere induction signalling and the oral-aboral axis formation in early sea urchin embryos., Yazaki I., Zygote. June 1, 2015; 23 (3): 426-46.                


Logics and properties of a genetic regulatory program that drives embryonic muscle development in an echinoderm., Andrikou C., Elife. July 28, 2015; 4                                       


Comparative Study of Regulatory Circuits in Two Sea Urchin Species Reveals Tight Control of Timing and High Conservation of Expression Dynamics., Gildor T., PLoS Genet. July 31, 2015; 11 (7): e1005435.          


Deployment of a retinal determination gene network drives directed cell migration in the sea urchin embryo., Martik ML., Elife. September 24, 2015; 4                               


Large-scale gene expression study in the ophiuroid Amphiura filiformis provides insights into evolution of gene regulatory networks., Dylus DV., Evodevo. January 1, 2016; 7 2.            


A workflow to process 3D+time microscopy images of developing organisms and reconstruct their cell lineage., Faure E., Nat Commun. February 25, 2016; 7 8674.            


Cilia play a role in breaking left-right symmetry of the sea urchin embryo., Takemoto A., Genes Cells. June 1, 2016; 21 (6): 568-78.


Differential Nanos 2 protein stability results in selective germ cell accumulation in the sea urchin., Oulhen N., Dev Biol. October 1, 2016; 418 (1): 146-156.


Morphological diversity of blastula formation and gastrulation in temnopleurid sea urchins., Kitazawa C., Biol Open. November 15, 2016; 5 (11): 1555-1566.                    


An integrated modelling framework from cells to organism based on a cohort of digital embryos., Villoutreix P., Sci Rep. December 2, 2016; 6 37438.        


An empirical model of Onecut binding activity at the sea urchin SM50 C-element gene regulatory region., Otim O., Int J Dev Biol. January 1, 2017; 61 (8-9): 537-543.


TGF-β sensu stricto signaling regulates skeletal morphogenesis in the sea urchin embryo., Sun Z., Dev Biol. January 15, 2017; 421 (2): 149-160.


Diversification of spatiotemporal expression and copy number variation of the echinoid hbox12/pmar1/micro1 multigene family., Cavalieri V., PLoS One. March 28, 2017; 12 (3): e0174404.              


Paleogenomics of echinoids reveals an ancient origin for the double-negative specification of micromeres in sea urchins., Thompson JR., Proc Natl Acad Sci U S A. June 6, 2017; 114 (23): 5870-5877.


Transforming a transcription factor., Burke RD., Elife. January 8, 2018; 7   


An optogenetic approach to control protein localization during embryogenesis of the sea urchin., Uchida A., Dev Biol. September 1, 2018; 441 (1): 19-30.


Early development of the feeding larva of the sea urchin Heliocidaris tuberculata: role of the small micromeres., Morris VB., Dev Genes Evol. January 1, 2019; 229 (1): 1-12.


Methods to label, isolate, and image sea urchin small micromeres, the primordial germ cells (PGCs)., Campanale JP., Methods Cell Biol. January 1, 2019; 150 269-292.


Culture of and experiments with sea urchin embryo primary mesenchyme cells., Moreno B., Methods Cell Biol. January 1, 2019; 150 293-330.


Distinct transcriptional regulation of Nanos2 in the germ line and soma by the Wnt and delta/notch pathways., Oulhen N., Dev Biol. August 1, 2019; 452 (1): 34-42.


Transglutaminase Activity Determines Nuclear Localization of Serotonin Immunoreactivity in the Early Embryos of Invertebrates and Vertebrates., Ivashkin E., ACS Chem Neurosci. August 21, 2019; 10 (8): 3888-3899.


Evolutionary modification of AGS protein contributes to formation of micromeres in sea urchins., Poon J., Nat Commun. August 22, 2019; 10 (1): 3779.                  


The evolution of a new cell type was associated with competition for a signaling ligand., Ettensohn CA., PLoS Biol. September 18, 2019; 17 (9): e3000460.                    


Simulations of sea urchin early development delineate the role of oriented cell division in the morula-to-blastula transition., Bodenstein L., Mech Dev. June 1, 2020; 162 103606.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5