Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (227) Expression Attributions Wiki
ECB-ANAT-124

Papers associated with micromere

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Vasa protein expression is restricted to the small micromeres of the sea urchin, but is inducible in other lineages early in development., Voronina E., Dev Biol. February 15, 2008; 314 (2): 276-86.


Transfer of a large gene regulatory apparatus to a new developmental address in echinoid evolution., Gao F., Proc Natl Acad Sci U S A. April 22, 2008; 105 (16): 6091-6.


Global regulatory logic for specification of an embryonic cell lineage., Oliveri P., Proc Natl Acad Sci U S A. April 22, 2008; 105 (16): 5955-62.


EGFR signalling is required for Paracentrotus lividus endomesoderm specification., Romancino DP., Arch Biochem Biophys. June 1, 2008; 474 (1): 167-74.


Twist is an essential regulator of the skeletogenic gene regulatory network in the sea urchin embryo., Wu SY., Dev Biol. July 15, 2008; 319 (2): 406-15.


Specification process of animal plate in the sea urchin embryo., Sasaki H., Dev Growth Differ. September 1, 2008; 50 (7): 595-606.


Structure-function correlation of micro1 for micromere specification in sea urchin embryos., Yamazaki A., Mech Dev. January 1, 2009; 126 (8-9): 611-23.


An evolutionary transition of Vasa regulation in echinoderms., Juliano CE., Evol Dev. January 1, 2009; 11 (5): 560-73.


Gene regulatory network interactions in sea urchin endomesoderm induction., Sethi AJ., PLoS Biol. February 3, 2009; 7 (2): e1000029.                        


Expression patterns of wnt8 orthologs in two sand dollar species with different developmental modes., Nakata H., Gene Expr Patterns. March 1, 2009; 9 (3): 152-7.


Evolutionary modification of specification for the endomesoderm in the direct developing echinoid Peronella japonica: loss of the endomesoderm-inducing signal originating from micromeres., Iijima M., Dev Genes Evol. May 1, 2009; 219 (5): 235-47.


Inhibition of spicule elongation in sea urchin embryos by the acetylcholinesterase inhibitor eserine., Ohta K., Comp Biochem Physiol B Biochem Mol Biol. August 1, 2009; 153 (4): 310-6.


Evolutionary modification of T-brain (tbr) expression patterns in sand dollar., Minemura K., Gene Expr Patterns. October 1, 2009; 9 (7): 468-74.


Role of the nanos homolog during sea urchin development., Fujii T., Dev Dyn. October 1, 2009; 238 (10): 2511-21.


The cis-regulatory system of the tbrain gene: Alternative use of multiple modules to promote skeletogenic expression in the sea urchin embryo., Wahl ME., Dev Biol. November 15, 2009; 335 (2): 428-41.


Dynamics of Delta/Notch signaling on endomesoderm segregation in the sea urchin embryo., Croce JC., Development. January 1, 2010; 137 (1): 83-91.


[A "micromere model" of cellular interactions in sea urchin embryos]., Shmukler IuB., Biofizika. January 1, 2010; 55 (3): 451-9.


Nanos functions to maintain the fate of the small micromere lineage in the sea urchin embryo., Juliano CE., Dev Biol. January 15, 2010; 337 (2): 220-32.


Embryonic, larval, and juvenile development of the sea biscuit Clypeaster subdepressus (Echinodermata: Clypeasteroida)., Vellutini BC., PLoS One. March 22, 2010; 5 (3): e9654.                                


Implication of HpEts in gene regulatory networks responsible for specification of sea urchin skeletogenic primary mesenchyme cells., Yajima M., Zoolog Sci. August 1, 2010; 27 (8): 638-46.


Exogenous RNA is selectively retained in the small micromeres during sea urchin embryogenesis., Gustafson EA., Mol Reprod Dev. October 1, 2010; 77 (10): 836.


Conserved early expression patterns of micromere specification genes in two echinoid species belonging to the orders clypeasteroida and echinoida., Yamazaki A., Dev Dyn. December 1, 2010; 239 (12): 3391-403.


Developmental expression of COE across the Metazoa supports a conserved role in neuronal cell-type specification and mesodermal development., Jackson DJ., Dev Genes Evol. December 1, 2010; 220 (7-8): 221-34.                    


Small micromeres contribute to the germline in the sea urchin., Yajima M., Development. January 1, 2011; 138 (2): 237-43.


The echinoid mitotic gradient: effect of cell size on the micromere cleavage cycle., Duncan RE., Mol Reprod Dev. January 1, 2011; 78 (10-11): 868-78.


Post-translational regulation by gustavus contributes to selective Vasa protein accumulation in multipotent cells during embryogenesis., Gustafson EA., Dev Biol. January 15, 2011; 349 (2): 440-50.


The control of foxN2/3 expression in sea urchin embryos and its function in the skeletogenic gene regulatory network., Rho HK., Development. March 1, 2011; 138 (5): 937-45.


Regulative deployment of the skeletogenic gene regulatory network during sea urchin development., Sharma T., Development. June 1, 2011; 138 (12): 2581-90.


Atypical protein kinase C controls sea urchin ciliogenesis., Prulière G., Mol Biol Cell. June 15, 2011; 22 (12): 2042-53.                


Precise cis-regulatory control of spatial and temporal expression of the alx-1 gene in the skeletogenic lineage of s. purpuratus., Damle S., Dev Biol. September 15, 2011; 357 (2): 505-17.


Opposing nodal and BMP signals regulate left-right asymmetry in the sea urchin larva., Luo YJ., PLoS Biol. January 1, 2012; 10 (10): e1001402.            


Left-right asymmetry in the sea urchin embryo: BMP and the asymmetrical origins of the adult., Warner JF., PLoS Biol. January 1, 2012; 10 (10): e1001404.  


Reciprocal signaling between the ectoderm and a mesendodermal left-right organizer directs left-right determination in the sea urchin embryo., Bessodes N., PLoS Genet. January 1, 2012; 8 (12): e1003121.                      


Programmed reduction of ABC transporter activity in sea urchin germline progenitors., Campanale JP., Development. February 1, 2012; 139 (4): 783-92.


Frizzled1/2/7 signaling directs β-catenin nuclearisation and initiates endoderm specification in macromeres during sea urchin embryogenesis., Lhomond G., Development. February 1, 2012; 139 (4): 816-25.


A comprehensive analysis of Delta signaling in pre-gastrular sea urchin embryos., Materna SC., Dev Biol. April 1, 2012; 364 (1): 77-87.


"Micromere" formation and expression of endomesoderm regulatory genes during embryogenesis of the primitive echinoid Prionocidaris baculosa., Yamazaki A., Dev Growth Differ. June 1, 2012; 54 (5): 566-78.


Sequencing and analysis of the gastrula transcriptome of the brittle star Ophiocoma wendtii., Vaughn R., Evodevo. September 3, 2012; 3 (1): 19.            


The forkhead transcription factor FoxY regulates Nanos., Song JL., Mol Reprod Dev. October 1, 2012; 79 (10): 680-8.


Autonomy in specification of primordial germ cells and their passive translocation in the sea urchin., Yajima M., Development. October 1, 2012; 139 (20): 3786-94.


Differential regulation of disheveled in a novel vegetal cortical domain in sea urchin eggs and embryos: implications for the localized activation of canonical Wnt signaling., Peng CJ., PLoS One. January 1, 2013; 8 (11): e80693.          


The 3''UTR of nanos2 directs enrichment in the germ cell lineage of the sea urchin., Oulhen N., Dev Biol. May 1, 2013; 377 (1): 275-83.


Retention of exogenous mRNAs selectively in the germ cells of the sea urchin requires only a 5''-cap and a 3''-UTR., Oulhen N., Mol Reprod Dev. July 1, 2013; 80 (7): 561-9.


Towards 3D in silico modeling of the sea urchin embryonic development., Rizzi B., J Chem Biol. September 13, 2013; 7 (1): 17-28.      


Nuclearization of β-catenin in ectodermal precursors confers organizer-like ability to induce endomesoderm and pattern a pluteus larva., Byrum CA., Evodevo. November 4, 2013; 4 (1): 31.        


Myogenesis in the sea urchin embryo: the molecular fingerprint of the myoblast precursors., Andrikou C., Evodevo. December 2, 2013; 4 (1): 33.              


Mesomere-derived glutamate decarboxylase-expressing blastocoelar mesenchyme cells of sea urchin larvae., Katow H., Biol Open. January 15, 2014; 3 (1): 94-102.              


Piwi regulates Vasa accumulation during embryogenesis in the sea urchin., Yajima M., Dev Dyn. March 1, 2014; 243 (3): 451-8.


Molecular conservation of metazoan gut formation: evidence from expression of endomesoderm genes in Capitella teleta (Annelida)., Boyle MJ., Evodevo. June 17, 2014; 5 39.          


Migration of sea urchin primordial germ cells., Campanale JP., Dev Dyn. July 1, 2014; 243 (7): 917-27.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 ???pagination.result.next???