Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (705) Expression Attributions Wiki
ECB-ANAT-169

Papers associated with germ layer

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 3 4 5 6 7 8 9 10 11 12 13 14 15 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Late Alk4/5/7 signaling is required for anterior skeletal patterning in sea urchin embryos., Piacentino ML., Development. March 1, 2015; 142 (5): 943-52.


Geometric control of ciliated band regulatory states in the sea urchin embryo., Barsi JC., Development. March 1, 2015; 142 (5): 953-61.


Expession patterns of mesenchyme specification genes in two distantly related echinoids, Glyptocidaris crenularis and Echinocardium cordatum., Yamazaki A., Gene Expr Patterns. March 1, 2015; 17 (2): 87-97.


Combined Effects of Cadmium and UVB Radiation on Sea Urchin Embryos: Skeleton Impairment Parallels p38 MAPK Activation and Stress Genes Overexpression., Bonaventura R., Chem Res Toxicol. May 18, 2015; 28 (5): 1060-9.


Ca²⁺ influx-linked protein kinase C activity regulates the β-catenin localization, micromere induction signalling and the oral-aboral axis formation in early sea urchin embryos., Yazaki I., Zygote. June 1, 2015; 23 (3): 426-46.                


microRNAs regulate β-catenin of the Wnt signaling pathway in early sea urchin development., Stepicheva N., Dev Biol. June 1, 2015; 402 (1): 127-41.


Logics and properties of a genetic regulatory program that drives embryonic muscle development in an echinoderm., Andrikou C., Elife. July 28, 2015; 4                                       


Comparative Study of Regulatory Circuits in Two Sea Urchin Species Reveals Tight Control of Timing and High Conservation of Expression Dynamics., Gildor T., PLoS Genet. July 31, 2015; 11 (7): e1005435.          


Carbonic anhydrase inhibition blocks skeletogenesis and echinochrome production in Paracentrotus lividus and Heliocidaris tuberculata embryos and larvae., Zito F., Dev Growth Differ. September 1, 2015; 57 (7): 507-14.


Patterning of anteroposterior body axis displayed in the expression of Hox genes in sea cucumber Apostichopus japonicus., Kikuchi M., Dev Genes Evol. September 1, 2015; 225 (5): 275-86.


The Maternal Maverick/GDF15-like TGF-β Ligand Panda Directs Dorsal-Ventral Axis Formation by Restricting Nodal Expression in the Sea Urchin Embryo., Haillot E., PLoS Biol. September 9, 2015; 13 (9): e1002247.                      


Deployment of a retinal determination gene network drives directed cell migration in the sea urchin embryo., Martik ML., Elife. September 24, 2015; 4                               


A deuterostome origin of the Spemann organiser suggested by Nodal and ADMPs functions in Echinoderms., Lapraz F., Nat Commun. October 1, 2015; 6 8434.                    


H(+)/K(+) ATPase activity is required for biomineralization in sea urchin embryos., Schatzberg D., Dev Biol. October 15, 2015; 406 (2): 259-70.


ABCC5 is required for cAMP-mediated hindgut invagination in sea urchin embryos., Shipp LE., Development. October 15, 2015; 142 (20): 3537-48.


microRNA-31 modulates skeletal patterning in the sea urchin embryo., Stepicheva NA., Development. November 1, 2015; 142 (21): 3769-80.


Genome-wide assessment of differential effector gene use in embryogenesis., Barsi JC., Development. November 15, 2015; 142 (22): 3892-901.


Hemichordate genomes and deuterostome origins., Simakov O., Nature. November 26, 2015; 527 (7579): 459-65.                          


Jun N-terminal kinase activity is required for invagination but not differentiation of the sea urchin archenteron., Long JT., Genesis. December 1, 2015; 53 (12): 762-9.


cis-Regulatory control of the initial neurogenic pattern of onecut gene expression in the sea urchin embryo., Barsi JC., Dev Biol. January 1, 2016; 409 (1): 310-318.


Large-scale gene expression study in the ophiuroid Amphiura filiformis provides insights into evolution of gene regulatory networks., Dylus DV., Evodevo. January 1, 2016; 7 2.            


Ancestral state reconstruction by comparative analysis of a GRN kernel operating in echinoderms., Erkenbrack EM., Dev Genes Evol. January 1, 2016; 226 (1): 37-45.


Experimental Approach Reveals the Role of alx1 in the Evolution of the Echinoderm Larval Skeleton., Koga H., PLoS One. January 1, 2016; 11 (2): e0149067.          


Robustness and Accuracy in Sea Urchin Developmental Gene Regulatory Networks., Ben-Tabou de-Leon S., Front Genet. January 1, 2016; 7 16.    


Sea Urchin Morphogenesis., McClay DR., Curr Top Dev Biol. January 1, 2016; 117 15-29.


Immunohistochemical and ultrastructural properties of the larval ciliary band-associated strand in the sea urchin Hemicentrotus pulcherrimus., Katow H., Front Zool. January 1, 2016; 13 27.                  


Neurogenesis in sea urchin embryos and the diversity of deuterostome neurogenic mechanisms., Garner S., Development. January 15, 2016; 143 (2): 286-97.


Neurogenic gene regulatory pathways in the sea urchin embryo., Wei Z., Development. January 15, 2016; 143 (2): 298-305.


RNA-Seq identifies SPGs as a ventral skeletal patterning cue in sea urchins., Piacentino ML., Development. February 15, 2016; 143 (4): 703-14.


Analysis of coelom development in the sea urchin Holopneustes purpurescens yielding a deuterostome body plan., Morris VB., Biol Open. February 18, 2016; 5 (3): 348-58.                  


A workflow to process 3D+time microscopy images of developing organisms and reconstruct their cell lineage., Faure E., Nat Commun. February 25, 2016; 7 8674.            


Comparative Developmental Transcriptomics Reveals Rewiring of a Highly Conserved Gene Regulatory Network during a Major Life History Switch in the Sea Urchin Genus Heliocidaris., Israel JW., PLoS Biol. March 1, 2016; 14 (3): e1002391.            


Contribution of hedgehog signaling to the establishment of left-right asymmetry in the sea urchin., Warner JF., Dev Biol. March 15, 2016; 411 (2): 314-324.


Zygotic LvBMP5-8 is required for skeletal patterning and for left-right but not dorsal-ventral specification in the sea urchin embryo., Piacentino ML., Dev Biol. April 1, 2016; 412 (1): 44-56.


Cooperative Wnt-Nodal Signals Regulate the Patterning of Anterior Neuroectoderm., Yaguchi J., PLoS Genet. April 21, 2016; 12 (4): e1006001.                


Wnt, Frizzled, and sFRP gene expression patterns during gastrulation in the starfish Patiria (Asterina) pectinifera., Kawai N., Gene Expr Patterns. May 1, 2016; 21 (1): 19-27.


Acquisition of the dorsal structures in chordate amphioxus., Morov AR., Open Biol. June 1, 2016; 6 (6):                 


Complexity of Yolk Proteins and Their Dynamics in the Sea Star Patiria miniata., Zazueta-Novoa V., Biol Bull. June 1, 2016; 230 (3): 209-19.


Expression of GATA and POU transcription factors during the development of the planktotrophic trochophore of the polychaete serpulid Hydroides elegans., Wong KS., Evol Dev. July 1, 2016; 18 (4): 254-66.


Eph and Ephrin function in dispersal and epithelial insertion of pigmented immunocytes in sea urchin embryos., Krupke OA., Elife. July 30, 2016; 5               


Cilia are required for asymmetric nodal induction in the sea urchin embryo., Tisler M., BMC Dev Biol. August 23, 2016; 16 (1): 28.        


Perturbation of gut bacteria induces a coordinated cellular immune response in the purple sea urchin larva., Ch Ho E., Immunol Cell Biol. October 1, 2016; 94 (9): 861-874.                


Calcium transport into the cells of the sea urchin larva in relation to spicule formation., Vidavsky N., Proc Natl Acad Sci U S A. November 8, 2016; 113 (45): 12637-12642.


A gene regulatory network for apical organ neurogenesis and its spatial control in sea star embryos., Cheatle Jarvela AM., Development. November 15, 2016; 143 (22): 4214-4223.


Divergence of ectodermal and mesodermal gene regulatory network linkages in early development of sea urchins., Erkenbrack EM., Proc Natl Acad Sci U S A. November 15, 2016; 113 (46): E7202-E7211.


Localization of Neuropeptide Gene Expression in Larvae of an Echinoderm, the Starfish Asterias rubens., Mayorova TD., Front Neurosci. December 1, 2016; 10 553.                  


An Intronic cis-Regulatory Element Is Crucial for the Alpha Tubulin Pl-Tuba1a Gene Activation in the Ciliary Band and Animal Pole Neurogenic Domains during Sea Urchin Development., Costa S., PLoS One. January 1, 2017; 12 (1): e0170969.                


Role of Mad2 expression during the early development of the sea urchin., Bronchain O., Int J Dev Biol. January 1, 2017; 61 (6-7): 451-457.


An empirical model of Onecut binding activity at the sea urchin SM50 C-element gene regulatory region., Otim O., Int J Dev Biol. January 1, 2017; 61 (8-9): 537-543.


Nodal and BMP expression during the transition to pentamery in the sea urchin Heliocidaris erythrogramma: insights into patterning the enigmatic echinoderm body plan., Koop D., BMC Dev Biol. February 13, 2017; 17 (1): 4.          

???pagination.result.page??? ???pagination.result.prev??? 3 4 5 6 7 8 9 10 11 12 13 14 15 ???pagination.result.next???