Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (99) Expression Attributions Wiki
ECB-ANAT-48

Papers associated with animal pole

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

The effect of temporary treatment of animal half embryos with lithium and the modification of this effect by simultaneous exposure to actinomycin D., de Angelis E., Wilhelm Roux Arch Entwickl Mech Org. September 1, 1970; 164 (3): 236-246.


[Cortical reaction in starred sturgeon eggs following fertilization and artificial activation]., Ginzburg AS., Ontogenez. January 1, 1978; 9 (3): 228-38.


Rheological properties of echinoderm eggs during cell division., Hiramoto Y., Biorheology. January 1, 1982; 19 (1/2): 71-8.


Morphological changes during maturation of starfish oocytes: surface ultrastructure and cortical actin., Schroeder TE., Dev Biol. August 1, 1983; 98 (2): 373-84.


Determination of dorso-ventral axis in early embryos of the sea urchin, Hemicentrotus pulcherrimus., Kominami T., Dev Biol. May 1, 1988; 127 (1): 187-96.


Presence and distribution of specific prosome antigens change as a function of embryonic development and tissue-type differentiation in Pleurodeles waltl., Pal JK., J Cell Sci. August 1, 1988; 90 ( Pt 4) 555-67.


Sea urchin oocytes possess elaborate cortical arrays of microfilaments, microtubules, and intermediate filaments., Boyle JA., Dev Biol. July 1, 1989; 134 (1): 72-84.


The oral-aboral axis of a sea urchin embryo is specified by first cleavage., Cameron RA., Development. August 1, 1989; 106 (4): 641-7.


Target recognition by the archenteron during sea urchin gastrulation., Hardin J., Dev Biol. November 1, 1990; 142 (1): 86-102.


Roles of the Polar Cytoplasmic Region in Meiotic Divisions in Oocytes of the Sea Cucumber, Holothuria leucospilota., Maruyama YK., Biol Bull. December 1, 1990; 179 (3): 264-271.


Snoods: a periodic network containing cytokeratin in the cortex of starfish oocytes., Schroeder TE., Dev Biol. April 1, 1991; 144 (2): 240-7.


Evolutionary dissociation between cleavage, cell lineage and embryonic axes in sea urchin embryos., Henry JJ., Development. April 1, 1992; 114 (4): 931-8.


Commitment along the dorsoventral axis of the sea urchin embryo is altered in response to NiCl2., Hardin J., Development. November 1, 1992; 116 (3): 671-85.


Cell-autonomous expression and position-dependent repression by Li+ of two zygotic genes during sea urchin early development., Ghiglione C., EMBO J. January 1, 1993; 12 (1): 87-96.


A complete second gut induced by transplanted micromeres in the sea urchin embryo., Ransick A., Science. February 19, 1993; 259 (5098): 1134-8.


Spatial distribution of two maternal messengers in Paracentrotus lividus during oogenesis and embryogenesis., Di Carlo M., Proc Natl Acad Sci U S A. June 7, 1994; 91 (12): 5622-6.


Redistribution of cytoplasmic components during germinal vesicle breakdown in starfish oocytes., Terasaki M., J Cell Sci. July 1, 1994; 107 ( Pt 7) 1797-805.


Primary mesenchyme cell migration in the sea urchin embryo: distribution of directional cues., Malinda KM., Dev Biol. August 1, 1994; 164 (2): 562-78.


Completely Direct Development of Abatus cordatus, a Brooding Schizasterid (Echinodermata: Echinoidea) from Kerguelen, With Description of Perigastrulation, a Hypothetical New Mode of Gastrulation., Schatt P., Biol Bull. February 1, 1996; 190 (1): 24-44.


Early gene expression along the animal-vegetal axis in sea urchin embryoids and grafted embryos., Ghiglione C., Development. October 1, 1996; 122 (10): 3067-74.


Heterotrimeric kinesin-II is required for the assembly of motile 9+2 ciliary axonemes on sea urchin embryos., Morris RL., J Cell Biol. September 8, 1997; 138 (5): 1009-22.              


Involvement of the cytoskeleton in localization of Paracentrotus lividus maternal BEP mRNAs and proteins., Romancino DP., Exp Cell Res. January 10, 1998; 238 (1): 101-9.


Folding and binding activity of the 3''UTRs of Paracentrotus lividus bep messengers., Montana G., FEBS Lett. March 20, 1998; 425 (1): 157-60.


GSK3beta/shaggy mediates patterning along the animal-vegetal axis of the sea urchin embryo., Emily-Fenouil F., Development. July 1, 1998; 125 (13): 2489-98.


Nuclear beta-catenin is required to specify vegetal cell fates in the sea urchin embryo., Logan CY., Development. January 1, 1999; 126 (2): 345-57.


Spatially restricted expression of PlOtp, a Paracentrotus lividus orthopedia-related homeobox gene, is correlated with oral ectodermal patterning and skeletal morphogenesis in late-cleavage sea urchin embryos., Di Bernardo M., Development. May 1, 1999; 126 (10): 2171-9.


Isolation of a trans-acting factor involved in localization of Paracentrotus lividus maternal mRNAs., Costa C., RNA. October 1, 1999; 5 (10): 1290-8.


Development of the Larval Serotonergic Nervous System in the Sea Star Patiriella regularis as Revealed by Confocal Imaging., Chee F., Biol Bull. October 1, 1999; 197 (2): 123-131.


Premeiotic aster as a device to anchor the germinal vesicle to the cell surface of the presumptive animal pole in starfish oocytes., Miyazaki A., Dev Biol. February 15, 2000; 218 (2): 161-71.


A micromere induction signal is activated by beta-catenin and acts through notch to initiate specification of secondary mesenchyme cells in the sea urchin embryo., McClay DR., Development. December 1, 2000; 127 (23): 5113-22.


Bep4 protein is involved in patterning along the animal-vegetal axis in the Paracentrotus lividus embryo., Romancino DP., Dev Biol. June 1, 2001; 234 (1): 107-19.


An invertebrate model of the developmental neurotoxicity of insecticides: effects of chlorpyrifos and dieldrin in sea urchin embryos and larvae., Buznikov GA., Environ Health Perspect. July 1, 2001; 109 (7): 651-61.


Centriole behavior during meiosis in oocytes of the sea urchin Hemicentrotus pulcherrimus., Nakashima S., Dev Growth Differ. August 1, 2001; 43 (4): 437-45.


[Cholinergic regulation of the sea urchin embryonic and larval development]., Buznikov GA., Ross Fiziol Zh Im I M Sechenova. November 1, 2001; 87 (11): 1548-56.


Displacement of the mitotic apparatus which induces ectopic polar body formation or parthenogenetic cleavage in starfish oocytes., Hamaguchi Y., Dev Biol. November 15, 2001; 239 (2): 364-75.


Behavior of pigment cells in gastrula-stage embryos of Hemicentrotus pulcherrimus and Scaphechinus mirabilis., Kominami T., Dev Growth Differ. December 1, 2001; 43 (6): 699-707.


Response of the cortex to the mitotic apparatus during polar body formation in the starfish oocyte of Asterina pectinifera., Hamaguchi Y., Cell Struct Funct. December 1, 2001; 26 (6): 627-31.


Cloning and developmental expression of a novel, secreted frizzled-related protein from the sea urchin, Strongylocentrotus purpuratus., Illies MR., Mech Dev. April 1, 2002; 113 (1): 61-4.


Patterning the sea urchin embryo: gene regulatory networks, signaling pathways, and cellular interactions., Angerer LM., Curr Top Dev Biol. January 1, 2003; 53 159-98.


Primary mesenchyme cell patterning during the early stages following ingression., Peterson RE., Dev Biol. February 1, 2003; 254 (1): 68-78.


Nuclear envelope breakdown in starfish oocytes proceeds by partial NPC disassembly followed by a rapidly spreading fenestration of nuclear membranes., Lénárt P., J Cell Biol. March 31, 2003; 160 (7): 1055-68.                


Unequal cell division regulated by the contents of germinal vesicles., Matsuura RK., Dev Biol. September 1, 2004; 273 (1): 76-86.


Determination of first cleavage plane: the relationships between the orientation of the mitotic apparatus for first cleavage and the position of meiotic division-related structures in starfish eggs., Kitajima A., Dev Biol. April 1, 2005; 280 (1): 48-58.


Role of microtubules and centrosomes in the eccentric relocation of the germinal vesicle upon meiosis reinitiation in sea-cucumber oocytes., Miyazaki A., Dev Biol. April 1, 2005; 280 (1): 237-47.


Selection of initial conditions for recursive production of multicellular organisms., Yoshida H., J Theor Biol. April 21, 2005; 233 (4): 501-14.


A microtubule-dependent zone of active RhoA during cleavage plane specification., Bement WM., J Cell Biol. July 4, 2005; 170 (1): 91-101.              


Characterization and expression of two matrix metalloproteinase genes during sea urchin development., Ingersoll EP., Gene Expr Patterns. August 1, 2005; 5 (6): 727-32.


Subequatorial cytoplasm plays an important role in ectoderm patterning in the sea urchin embryo., Kominami T., Dev Growth Differ. February 1, 2006; 48 (2): 101-15.


Specification of ectoderm restricts the size of the animal plate and patterns neurogenesis in sea urchin embryos., Yaguchi S., Development. June 1, 2006; 133 (12): 2337-46.


Strongylocentrotus drobachiensis oocytes maintain a microtubule organizing center throughout oogenesis: implications for the establishment of egg polarity in sea urchins., Egaña AL., Mol Reprod Dev. January 1, 2007; 74 (1): 76-87.

???pagination.result.page??? 1 2 ???pagination.result.next???