Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (281) Expression Attributions Wiki
ECB-ANAT-223

Papers associated with embryonic skeletogenic mesenchyme

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

The surprising complexity of the transcriptional regulation of the spdri gene reveals the existence of new linkages inside sea urchin''s PMC and Oral Ectoderm Gene Regulatory Networks., Mahmud AA., Dev Biol. October 15, 2008; 322 (2): 425-34.


Structure-function correlation of micro1 for micromere specification in sea urchin embryos., Yamazaki A., Mech Dev. January 1, 2009; 126 (8-9): 611-23.


Gene regulatory network interactions in sea urchin endomesoderm induction., Sethi AJ., PLoS Biol. February 3, 2009; 7 (2): e1000029.                        


Monte Carlo analysis of an ODE Model of the Sea Urchin Endomesoderm Network., Kühn C., BMC Syst Biol. August 23, 2009; 3 83.                      


Evolutionary modification of T-brain (tbr) expression patterns in sand dollar., Minemura K., Gene Expr Patterns. October 1, 2009; 9 (7): 468-74.


Role of the nanos homolog during sea urchin development., Fujii T., Dev Dyn. October 1, 2009; 238 (10): 2511-21.


Patterning of the dorsal-ventral axis in echinoderms: insights into the evolution of the BMP-chordin signaling network., Lapraz F., PLoS Biol. November 1, 2009; 7 (11): e1000248.                        


Nodal and BMP2/4 pattern the mesoderm and endoderm during development of the sea urchin embryo., Duboc V., Development. January 1, 2010; 137 (2): 223-35.


SpSM30 gene family expression patterns in embryonic and adult biomineralized tissues of the sea urchin, Strongylocentrotus purpuratus., Killian CE., Gene Expr Patterns. January 1, 2010; 10 (2-3): 135-9.


Embryonic, larval, and juvenile development of the sea biscuit Clypeaster subdepressus (Echinodermata: Clypeasteroida)., Vellutini BC., PLoS One. March 22, 2010; 5 (3): e9654.                                


Targeted mutagenesis in the sea urchin embryo using zinc-finger nucleases., Ochiai H., Genes Cells. August 1, 2010; 15 (8): 875-85.


Implication of HpEts in gene regulatory networks responsible for specification of sea urchin skeletogenic primary mesenchyme cells., Yajima M., Zoolog Sci. August 1, 2010; 27 (8): 638-46.


Developmental expression of COE across the Metazoa supports a conserved role in neuronal cell-type specification and mesodermal development., Jackson DJ., Dev Genes Evol. December 1, 2010; 220 (7-8): 221-34.                    


Asymmetric inhibition of spicule formation in sea urchin embryos with low concentrations of gadolinium ion., Saitoh M., Dev Growth Differ. December 1, 2010; 52 (9): 735-46.


Echinoderms as blueprints for biocalcification: regulation of skeletogenic genes and matrices., Matranga V., Prog Mol Subcell Biol. January 1, 2011; 52 225-48.


Bioengineering single crystal growth., Wu CH., J Am Chem Soc. February 16, 2011; 133 (6): 1658-61.


The control of foxN2/3 expression in sea urchin embryos and its function in the skeletogenic gene regulatory network., Rho HK., Development. March 1, 2011; 138 (5): 937-45.


P58-A and P58-B: novel proteins that mediate skeletogenesis in the sea urchin embryo., Adomako-Ankomah A., Dev Biol. May 1, 2011; 353 (1): 81-93.


Regulative deployment of the skeletogenic gene regulatory network during sea urchin development., Sharma T., Development. June 1, 2011; 138 (12): 2581-90.


Atypical protein kinase C controls sea urchin ciliogenesis., Prulière G., Mol Biol Cell. June 15, 2011; 22 (12): 2042-53.                


Specific expression of a TRIM-containing factor in ectoderm cells affects the skeletal morphogenetic program of the sea urchin embryo., Cavalieri V., Development. October 1, 2011; 138 (19): 4279-90.


Rapid adaptation to food availability by a dopamine-mediated morphogenetic response., Adams DK., Nat Commun. December 20, 2011; 2 592.        


Opposing nodal and BMP signals regulate left-right asymmetry in the sea urchin larva., Luo YJ., PLoS Biol. January 1, 2012; 10 (10): e1001402.            


Morphogenesis in sea urchin embryos: linking cellular events to gene regulatory network states., Lyons DC., Wiley Interdiscip Rev Dev Biol. January 1, 2012; 1 (2): 231-52.


The genomic regulatory control of skeletal morphogenesis in the sea urchin., Rafiq K., Development. February 1, 2012; 139 (3): 579-90.


Phylogenetic analysis and expression patterns of p16 and p19 in Paracentrotus lividus embryos., Costa C., Dev Genes Evol. July 1, 2012; 222 (4): 245-51.


Zinc-finger nuclease-mediated targeted insertion of reporter genes for quantitative imaging of gene expression in sea urchin embryos., Ochiai H., Proc Natl Acad Sci U S A. July 3, 2012; 109 (27): 10915-20.


Early developmental gene regulation in Strongylocentrotus purpuratus embryos in response to elevated CO₂ seawater conditions., Hammond LM., J Exp Biol. July 15, 2012; 215 (Pt 14): 2445-54.


Development of an embryonic skeletogenic mesenchyme lineage in a sea cucumber reveals the trajectory of change for the evolution of novel structures in echinoderms., McCauley BS., Evodevo. August 9, 2012; 3 (1): 17.          


Par6 regulates skeletogenesis and gut differentiation in sea urchin larvae., Shiomi K., Dev Genes Evol. September 1, 2012; 222 (5): 269-78.


Acidified seawater impacts sea urchin larvae pH regulatory systems relevant for calcification., Stumpp M., Proc Natl Acad Sci U S A. October 30, 2012; 109 (44): 18192-7.


Recombinant sea urchin vascular endothelial growth factor directs single-crystal growth and branching in vitro., Knapp RT., J Am Chem Soc. October 31, 2012; 134 (43): 17908-11.


Growth attenuation with developmental schedule progression in embryos and early larvae of Sterechinus neumayeri raised under elevated CO2., Yu PC., PLoS One. January 1, 2013; 8 (1): e52448.              


Characterization and Endocytic Internalization of Epith-2 Cell Surface Glycoprotein during the Epithelial-to-Mesenchymal Transition in Sea Urchin Embryos., Wakayama N., Front Endocrinol (Lausanne). January 1, 2013; 4 112.              


Growth factor-mediated mesodermal cell guidance and skeletogenesis during sea urchin gastrulation., Adomako-Ankomah A., Development. October 1, 2013; 140 (20): 4214-25.


Expression pattern of vascular endothelial growth factor 2 during sea urchin development., Kipryushina YO., Gene Expr Patterns. December 1, 2013; 13 (8): 402-6.


Myogenesis in the sea urchin embryo: the molecular fingerprint of the myoblast precursors., Andrikou C., Evodevo. December 2, 2013; 4 (1): 33.              


Initial stages of calcium uptake and mineral deposition in sea urchin embryos., Vidavsky N., Proc Natl Acad Sci U S A. January 7, 2014; 111 (1): 39-44.


Mesomere-derived glutamate decarboxylase-expressing blastocoelar mesenchyme cells of sea urchin larvae., Katow H., Biol Open. January 15, 2014; 3 (1): 94-102.              


Genome-wide analysis of the skeletogenic gene regulatory network of sea urchins., Rafiq K., Development. February 1, 2014; 141 (4): 950-61.


Growth factors and early mesoderm morphogenesis: insights from the sea urchin embryo., Adomako-Ankomah A., Genesis. March 1, 2014; 52 (3): 158-72.


Horizontal transfer of the msp130 gene supported the evolution of metazoan biomineralization., Ettensohn CA., Evol Dev. May 1, 2014; 16 (3): 139-48.


Larval mesenchyme cell specification in the primitive echinoid occurs independently of the double-negative gate., Yamazaki A., Development. July 1, 2014; 141 (13): 2669-79.


Specification to biomineralization: following a single cell type as it constructs a skeleton., Lyons DC., Integr Comp Biol. October 1, 2014; 54 (4): 723-33.


Signal-dependent regulation of the sea urchin skeletogenic gene regulatory network., Sun Z., Gene Expr Patterns. November 1, 2014; 16 (2): 93-103.


Early asymmetric cues triggering the dorsal/ventral gene regulatory network of the sea urchin embryo., Cavalieri V., Elife. December 2, 2014; 3 e04664.                            


Mechanisms of the epithelial-to-mesenchymal transition in sea urchin embryos., Katow H., Tissue Barriers. January 1, 2015; 3 (4): e1059004.


Late Alk4/5/7 signaling is required for anterior skeletal patterning in sea urchin embryos., Piacentino ML., Development. March 1, 2015; 142 (5): 943-52.


Ca²⁺ influx-linked protein kinase C activity regulates the β-catenin localization, micromere induction signalling and the oral-aboral axis formation in early sea urchin embryos., Yazaki I., Zygote. June 1, 2015; 23 (3): 426-46.                


Lectin uptake and incorporation into the calcitic spicule of sea urchin embryos., Mozingo NM., Zygote. June 1, 2015; 23 (3): 467-73.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 ???pagination.result.next???