Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (2174) Expression Attributions Wiki
ECB-ANAT-10

Papers associated with embryo

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Impairing Otp homeodomain function in oral ectoderm cells affects skeletogenesis in sea urchin embryos., Cavalieri V., Dev Biol. October 1, 2003; 262 (1): 107-18.


Expression and function of a starfish Otx ortholog, AmOtx: a conserved role for Otx proteins in endoderm development that predates divergence of the eleutherozoa., Hinman VF., Mech Dev. October 1, 2003; 120 (10): 1165-76.


Sea urchin elongation factor 1delta (EF1delta) and evidence for cell cycle-directed localization changes of a sub-fraction of the protein at M phase., Boulben S., Cell Mol Life Sci. October 1, 2003; 60 (10): 2178-88.


Exposure to ultraviolet radiation causes apoptosis in developing sea urchin embryos., Lesser MP., J Exp Biol. November 1, 2003; 206 (Pt 22): 4097-103.


A standardisation of Ciona intestinalis (Chordata, Ascidiacea) embryo-larval bioassay for ecotoxicological studies., Bellas J., Water Res. November 1, 2003; 37 (19): 4613-22.


The sea urchin embryo as a model for mammalian developmental neurotoxicity: ontogenesis of the high-affinity choline transporter and its role in cholinergic trophic activity., Qiao D., Environ Health Perspect. November 1, 2003; 111 (14): 1730-5.


Mechanisms, mechanics and function of epithelial-mesenchymal transitions in early development., Shook D., Mech Dev. November 1, 2003; 120 (11): 1351-83.


Developmental gene regulatory network architecture across 500 million years of echinoderm evolution., Hinman VF., Proc Natl Acad Sci U S A. November 11, 2003; 100 (23): 13356-61.


Influence of cucumariosides upon intracellular [Ca2+]i and lysosomal activity of macrophages., Agafonova IG., J Agric Food Chem. November 19, 2003; 51 (24): 6982-6.


Patterning mechanisms in the evolution of derived developmental life histories: the role of Wnt signaling in axis formation of the direct-developing sea urchin Heliocidaris erythrogramma., Kauffman JS., Dev Genes Evol. December 1, 2003; 213 (12): 612-24.


Expression of univin, a TGF-beta growth factor, requires ectoderm-ECM interaction and promotes skeletal growth in the sea urchin embryo., Zito F., Dev Biol. December 1, 2003; 264 (1): 217-27.


Ultrastructural localization of spicule matrix proteins in normal and metalloproteinase inhibitor-treated sea urchin primary mesenchyme cells., Ingersoll EP., J Exp Zool A Comp Exp Biol. December 1, 2003; 300 (2): 101-12.


Developmental regulation of catecholamine levels during sea urchin embryo morphogenesis., Anitole-Misleh KG., Comp Biochem Physiol A Mol Integr Physiol. January 1, 2004; 137 (1): 39-50.


Evolution of development in the sea star genus Patiriella: clade-specific alterations in cleavage., Cerra A., Evol Dev. January 1, 2004; 6 (2): 105-13.


Major components of a sea urchin block to polyspermy are structurally and functionally conserved., Wong JL., Evol Dev. January 1, 2004; 6 (3): 134-53.


Carbohydrate involvement in cellular interactions in sea urchin gastrulation., Khurrum M., Acta Histochem. January 1, 2004; 106 (2): 97-106.


On the origin of the chordate central nervous system: expression of onecut in the sea urchin embryo., Poustka AJ., Evol Dev. January 1, 2004; 6 (4): 227-36.


Blastomere isolation and transplantation., Sweet H., Methods Cell Biol. January 1, 2004; 74 243-71.


Isolation and culture of micromeres and primary mesenchyme cells., Wilt FH., Methods Cell Biol. January 1, 2004; 74 273-85.


Methods for embryo dissociation and analysis of cell adhesion., McClay DR., Methods Cell Biol. January 1, 2004; 74 311-29.


Analysis of sea urchin embryo gene expression by immunocytochemistry., Venuti JM., Methods Cell Biol. January 1, 2004; 74 333-69.


Using reporter genes to study cis-regulatory elements., Arnone MI., Methods Cell Biol. January 1, 2004; 74 621-52.


Expression of exogenous mRNAs to study gene function in the sea urchin embryo., Lepage T., Methods Cell Biol. January 1, 2004; 74 677-97.


Gene regulatory network analysis in sea urchin embryos., Oliveri P., Methods Cell Biol. January 1, 2004; 74 775-94.


Cloning of a novel phospholipase C-delta isoform from pacific purple sea urchin (Strongylocentrotus purpuratus) gametes and its expression during early embryonic development., Coward K., Biochem Biophys Res Commun. January 23, 2004; 313 (4): 894-901.


Sulfide as a confounding factor in toxicity tests with the sea urchin Paracentrotus lividus: comparisons with chemical analysis data., Losso C., Environ Toxicol Chem. February 1, 2004; 23 (2): 396-401.


Pigment cells trigger the onset of gastrulation in tropical sea urchin Echinometra mathaei., Takata H., Dev Growth Differ. February 1, 2004; 46 (1): 23-35.


Commitment and response to inductive signals of primary mesenchyme cells of the sea urchin embryo., Kiyomoto M., Dev Growth Differ. February 1, 2004; 46 (1): 107-14.


A Raf/MEK/ERK signaling pathway is required for development of the sea urchin embryo micromere lineage through phosphorylation of the transcription factor Ets., Röttinger E., Development. March 1, 2004; 131 (5): 1075-87.


Nodal and BMP2/4 signaling organizes the oral-aboral axis of the sea urchin embryo., Duboc V., Dev Cell. March 1, 2004; 6 (3): 397-410.


Mechanisms of calcium elevation in the micromeres of sea urchin embryos., Yazaki I., Biol Cell. March 1, 2004; 96 (2): 153-67.


cis-Regulatory activity of randomly chosen genomic fragments from the sea urchin., Cameron RA., Gene Expr Patterns. March 1, 2004; 4 (2): 205-13.


Focal adhesion kinase (FAK) expression and phosphorylation in sea urchin embryos., García MG., Gene Expr Patterns. March 1, 2004; 4 (2): 223-34.


PI3K inhibitors block skeletogenesis but not patterning in sea urchin embryos., Bradham CA., Dev Dyn. April 1, 2004; 229 (4): 713-21.


Morphological evolution in sea urchin development: hybrids provide insights into the pace of evolution., Byrne M., Bioessays. April 1, 2004; 26 (4): 343-7.


The 5-HT receptor cell is a new member of secondary mesenchyme cell descendants and forms a major blastocoelar network in sea urchin larvae., Katow H., Mech Dev. April 1, 2004; 121 (4): 325-37.


Hormetic versus toxic effects of vegetable tannin in a multitest study., De Nicola E., Arch Environ Contam Toxicol. April 1, 2004; 46 (3): 336-44.


Role of the ERK-mediated signaling pathway in mesenchyme formation and differentiation in the sea urchin embryo., Fernandez-Serra M., Dev Biol. April 15, 2004; 268 (2): 384-402.


Regulated proteolysis by cortical granule serine protease 1 at fertilization., Haley SA., Mol Biol Cell. May 1, 2004; 15 (5): 2084-92.


Expression of an NK2 homeodomain gene in the apical ectoderm defines a new territory in the early sea urchin embryo., Takacs CM., Dev Biol. May 1, 2004; 269 (1): 152-64.


Evaluation of developmental phenotypes produced by morpholino antisense targeting of a sea urchin Runx gene., Coffman JA., BMC Biol. May 7, 2004; 2 6.      


An otx cis-regulatory module: a key node in the sea urchin endomesoderm gene regulatory network., Yuh CH., Dev Biol. May 15, 2004; 269 (2): 536-51.


Effects of heavy metals on sea urchin embryo development. 1. Tracing the cause by the effects., Kobayashi N., Chemosphere. June 1, 2004; 55 (10): 1403-12.


Differential stability of beta-catenin along the animal-vegetal axis of the sea urchin embryo mediated by dishevelled., Weitzel HE., Development. June 1, 2004; 131 (12): 2947-56.


''Nectosome'': a novel cytoplasmic vesicle containing nectin in the egg of the sea urchin, Temnopleurus hardwickii., Kato KH., Dev Growth Differ. June 1, 2004; 46 (3): 239-47.


Signal transduction pathways that contribute to CDK1/cyclin B activation during the first mitotic division in sea urchin embryos., Salaün P., Exp Cell Res. June 10, 2004; 296 (2): 347-57.


Nuclear beta-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages., Wikramanayake AH., Genesis. July 1, 2004; 39 (3): 194-205.


Proteolytic cleavage of the cell surface protein p160 is required for detachment of the fertilization envelope in the sea urchin., Haley SA., Dev Biol. August 1, 2004; 272 (1): 191-202.


Gastrulation in the sea urchin embryo: a model system for analyzing the morphogenesis of a monolayered epithelium., Kominami T., Dev Growth Differ. August 1, 2004; 46 (4): 309-26.


A new G-stretch-DNA-binding protein, Unichrom, displays cell-cycle-dependent expression in sea urchin embryos., Moritani K., Dev Growth Differ. August 1, 2004; 46 (4): 335-41.

???pagination.result.page??? ???pagination.result.prev??? 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 ???pagination.result.next???