Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (2174) Expression Attributions Wiki
ECB-ANAT-10

Papers associated with embryo

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Association of the sea urchin EGF-related peptide, EGIP-D, with fasciclin I-related ECM proteins from the sea urchin Anthocidaris crassispina., Hirate Y., Dev Growth Differ. August 1, 1999; 41 (4): 483-94.


Requirement of SpOtx in cell fate decisions in the sea urchin embryo and possible role as a mediator of beta-catenin signaling., Li X., Dev Biol. August 15, 1999; 212 (2): 425-39.


Functional gap junctions in the early sea urchin embryo are localized to the vegetal pole., Yazaki I., Dev Biol. August 15, 1999; 212 (2): 503-10.


A method of microinjection: delivering monoclonal antibody 1223 into sea urchin embryos., Cho JW., Mol Cells. August 31, 1999; 9 (4): 455-8.


EST analysis of gene expression in early cleavage-stage sea urchin embryos., Lee YH., Development. September 1, 1999; 126 (17): 3857-67.


Ultrastructural localization of proteins involved in sea urchin biomineralization., Ameye L., J Histochem Cytochem. September 1, 1999; 47 (9): 1189-200.


Temperature dependence of membrane lipid composition in early blastula embryos of Lytechinus pictus: selective sorting of phospholipids into nascent plasma membranes., Tremper KE., J Membr Biol. September 1, 1999; 171 (1): 47-53.


Parameters that specify the timing of cytokinesis., Shuster CB., J Cell Biol. September 6, 1999; 146 (5): 981-92.              


A view from the genome: spatial control of transcription in sea urchin development., Davidson EH., Curr Opin Genet Dev. October 1, 1999; 9 (5): 530-41.


Timing of the potential of micromere-descendants in echinoid embryos to induce endoderm differentiation of mesomere-descendants., Minokawa T., Dev Growth Differ. October 1, 1999; 41 (5): 535-47.


Mechanism of Ca2+ release at fertilization in mammals., Swann K., J Exp Zool. October 15, 1999; 285 (3): 267-75.


Lectin histochemistry of the hyaline layer around the larvae of Patiriella species (Asteroidea) with different developmental modes., Cerra A., J Morphol. November 1, 1999; 242 (2): 91-9.


The role of micromere signaling in Notch activation and mesoderm specification during sea urchin embryogenesis., Sweet HC., Development. December 1, 1999; 126 (23): 5255-65.


SpSoxB1, a maternally encoded transcription factor asymmetrically distributed among early sea urchin blastomeres., Kenny AP., Development. December 1, 1999; 126 (23): 5473-83.


Microinjection of an antibody to the Ku protein arrests development in sea urchin embryos., Kanungo J., Biol Bull. December 1, 1999; 197 (3): 341-7.


Phosphorylation-dependent regulation of skeletogenesis in sea urchin micromere-derived cells and embryos., Cervello M., Dev Growth Differ. December 1, 1999; 41 (6): 769-75.


Caulerpenyne blocks MBP kinase activation controlling mitosis in sea urchin eggs., Pesando D., Eur J Cell Biol. December 1, 1999; 78 (12): 903-10.


Studies on the cellular basis of morphogenesis in the sea urchin embryo. Directed movements of primary mesenchyme cells in normal and vegetalized larvae., Gustafson T., Exp Cell Res. December 15, 1999; 253 (2): 288-95.


Conservation of the WD-repeat, microtubule-binding protein, EMAP, in sea urchins, humans, and the nematode C. elegans., Suprenant KA., Dev Genes Evol. January 1, 2000; 210 (1): 2-10.


Characterization of a hemichordate fork head/HNF-3 gene expression., Taguchi S., Dev Genes Evol. January 1, 2000; 210 (1): 11-7.


Mathematical model for early development of the sea urchin embryo., Ciliberto A., Bull Math Biol. January 1, 2000; 62 (1): 37-59.


Transgenic manipulation of the sea urchin embryo., Rast JP., Methods Mol Biol. January 1, 2000; 136 365-73.


Patterning the early sea urchin embryo., Ettensohn CA., Curr Top Dev Biol. January 1, 2000; 50 1-44.


Identification and characterization of gelatin-cleavage activities in the apically located extracellular matrix of the sea urchin embryo., Flood J., Biochem Cell Biol. January 1, 2000; 78 (4): 455-62.


Homeobox genes and sea urchin development., Di Bernardo M., Int J Dev Biol. January 1, 2000; 44 (6): 637-43.


HpEts implicated in primary mesenchyme cell differentiation of the sea urchin (Hemicentrotus pulcherrimus) embryo., Kurokawa D., Zygote. January 1, 2000; 8 Suppl 1 S33-4.


Characterisation of a 41 kDa collagenase/gelatinase activity expressed in the sea urchin embryo., Robinson JJ., Zygote. January 1, 2000; 8 Suppl 1 S37-8.


Lim1-related homeobox gene (HpLim1) expressed in sea urchin embryo., Mitsunaga-Nakatsubo K., Zygote. January 1, 2000; 8 Suppl 1 S71-2.


Identification of new skeletogenic genes of the sea urchin embryo by use of conserved sequence motifs among the SM50 gene family., Lee YH., Zygote. January 1, 2000; 8 Suppl 1 S74.


Studies on the potential of micromeres to induce archenteron differentiation in embryos of a direct-developing sand dollar, Peronella japonica., Iijima M., Zygote. January 1, 2000; 8 Suppl 1 S80.


Morphogenesis of exogut isolated from vegetalised embryo of sea urchin., Kamata Y., Zygote. January 1, 2000; 8 Suppl 1 S84.


Novel gene expression patterns in hybrid embryos between species with different modes of development., Nielsen MG., Evol Dev. January 1, 2000; 2 (3): 133-44.


Modularity and dissociation in the evolution of gene expression territories in development., Raff RA., Evol Dev. January 1, 2000; 2 (2): 102-13.


Enzymatic conversion of cyclic dipeptides to dehydro derivatives that inhibit cell division., Kanzaki H., J Biosci Bioeng. January 1, 2000; 90 (1): 86-9.


TCF is the nuclear effector of the beta-catenin signal that patterns the sea urchin animal-vegetal axis., Vonica A., Dev Biol. January 15, 2000; 217 (2): 230-43.


Animal-vegetal axis patterning mechanisms in the early sea urchin embryo., Angerer LM., Dev Biol. February 1, 2000; 218 (1): 1-12.


Involvement of Tcf/Lef in establishing cell types along the animal-vegetal axis of sea urchins., Huang L., Dev Genes Evol. February 1, 2000; 210 (2): 73-81.


The GTP-binding protein RhoA localizes to the cortical granules of Strongylocentrotus purpuratas sea urchin egg and is secreted during fertilization., CuĂ©llar-Mata P., Eur J Cell Biol. February 1, 2000; 79 (2): 81-91.


Primary mesenchyme cell-ring pattern formation in 2D-embryos of the sea urchin., Katow H., Dev Growth Differ. February 1, 2000; 42 (1): 9-17.


A starfish homolog of mouse T-brain-1 is expressed in the archenteron of Asterina pectinifera embryos: possible involvement of two T-box genes in starfish gastrulation., Shoguchi E., Dev Growth Differ. February 1, 2000; 42 (1): 61-8.


Subcellular trafficking of the nuclear receptor COUP-TF in the early embryonic cell cycle., Vlahou A., Dev Biol. February 15, 2000; 218 (2): 284-98.


Exocytotic insertion of calcium channels constrains compensatory endocytosis to sites of exocytosis., Smith RM., J Cell Biol. February 21, 2000; 148 (4): 755-67.                  


A BMP pathway regulates cell fate allocation along the sea urchin animal-vegetal embryonic axis., Angerer LM., Development. March 1, 2000; 127 (5): 1105-14.


Relationship between p62 and p56, two proteins of the mammalian cortical granule envelope, and hyalin, the major component of the echinoderm hyaline layer, in hamsters., Hoodbhoy T., Biol Reprod. April 1, 2000; 62 (4): 979-87.


Chemical structure of nuclear proteins which are phosphorylated during meiotic maturation of starfish oocytes., Matoba K., Biochemistry. May 30, 2000; 39 (21): 6390-400.


Cell-substrate interactions during sea urchin gastrulation: migrating primary mesenchyme cells interact with and align extracellular matrix fibers that contain ECM3, a molecule with NG2-like and multiple calcium-binding domains., Hodor PG., Dev Biol. June 1, 2000; 222 (1): 181-94.


Expression of the otx gene in the ciliary bands during sea cucumber embryogenesis., Shoguchi E., Genesis. June 1, 2000; 27 (2): 58-63.


Vestigial ophiopluteal structures in the lecithotrophic larvae of Ophionereis schayeri (Ophiuroidea)., Selvakumaraswamy P., Biol Bull. June 1, 2000; 198 (3): 379-86.


False fertilization in sea urchin eggs induced by diabolin, a 120K kelp protein., Nomura K., Biochem Biophys Res Commun. June 16, 2000; 272 (3): 691-3.


Inhibiting proteasome activity causes overreplication of DNA and blocks entry into mitosis in sea urchin embryos., Kawahara H., J Cell Sci. August 1, 2000; 113 ( Pt 15) 2659-70.

???pagination.result.page??? ???pagination.result.prev??? 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 ???pagination.result.next???