Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (358) Expression Attributions Wiki
ECB-ANAT-43

Papers associated with vegetal hemisphere

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

The synthesis and secretion of collagen by cultured sea urchin micromeres., Benson S., Exp Cell Res. May 1, 1990; 188 (1): 141-6.


Range and stability of cell fate determination in isolated sea urchin blastomeres., Livingston BT., Development. March 1, 1990; 108 (3): 403-10.


[Phorbol ester disrupts the cleavage pattern in sea urchin embryos]., Bozhkova VP., Ontogenez. January 1, 1990; 21 (2): 160-6.


Early inductive interactions are involved in restricting cell fates of mesomeres in sea urchin embryos., Henry JJ., Dev Biol. November 1, 1989; 136 (1): 140-53.


Embryonic cellular organization: differential restriction of fates as revealed by cell aggregates and lineage markers., Bernacki SH., J Exp Zool. August 1, 1989; 251 (2): 203-16.


Lithium evokes expression of vegetal-specific molecules in the animal blastomeres of sea urchin embryos., Livingston BT., Proc Natl Acad Sci U S A. May 1, 1989; 86 (10): 3669-73.


Evolutionary modification of cell lineage in the direct-developing sea urchin Heliocidaris erythrogramma., Wray GA., Dev Biol. April 1, 1989; 132 (2): 458-70.


Expression of an embryonic spicule matrix gene in calcified tissues of adult sea urchins., Richardson W., Dev Biol. March 1, 1989; 132 (1): 266-9.


The isotopic effects of D2O in developing sea urchin eggs., Sumitro SB., Cell Struct Funct. February 1, 1989; 14 (1): 95-111.


Evans blue treatment promotes blastomere separation and twinning in Lytechinus pictus embryos., Johnson LG., Dev Biol. January 1, 1989; 131 (1): 276-9.


Sea-urchin RNAs displaying differences in developmental regulation and in complementarity to a collagen exon probe., Nemer M., Biochim Biophys Acta. September 7, 1988; 950 (3): 445-9.


The origin of spicule-forming cells in a ''primitive'' sea urchin (Eucidaris tribuloides) which appears to lack primary mesenchyme cells., Wray GA., Development. June 1, 1988; 103 (2): 305-15.


Coordinate accumulation of five transcripts in the primary mesenchyme during skeletogenesis in the sea urchin embryo., Harkey MA., Dev Biol. February 1, 1988; 125 (2): 381-95.


The origin of skeleton forming cells in the sea urchin embryo., Urben S., Rouxs Arch Dev Biol. January 1, 1988; 197 (8): 447-456.


Histone modifications accompanying the onset of developmental commitment., Chambers SA., Dev Biol. December 1, 1987; 124 (2): 523-31.


Fourth cleavage of sea urchin blastomeres: microtubule patterns and myosin localization in equal and unequal cell divisions., Schroeder TE., Dev Biol. November 1, 1987; 124 (1): 9-22.


Determination and morphogenesis in the sea urchin embryo., Wilt FH., Development. August 1, 1987; 100 (4): 559-76.


Sea urchin maternal and embryonic U1 RNAs are spatially segregated in early embryos., Nash MA., J Cell Biol. May 1, 1987; 104 (5): 1133-42.


A lineage-specific gene encoding a major matrix protein of the sea urchin embryo spicule. I. Authentication of the cloned gene and its developmental expression., Benson S., Dev Biol. April 1, 1987; 120 (2): 499-506.


Developmental and tissue-specific regulation of beta-tubulin gene expression in the embryo of the sea urchin Strongylocentrotus purpuratus., Harlow P., Genes Dev. April 1, 1987; 1 (2): 147-60.


Distributions of H+,K+-ATPase and Cl-,HCO3(-)-ATPase in micromere-derived cells of sea urchin embryos., Mitsunaga K., Differentiation. January 1, 1987; 35 (3): 190-6.


Metallothionein genes MTa and MTb expressed under distinct quantitative and tissue-specific regulation in sea urchin embryos., Wilkinson DG., Mol Cell Biol. January 1, 1987; 7 (1): 48-58.


Change in the activity of Cl-,HCO3(-)-ATPase in microsome fraction during early development of the sea urchin, Hemicentrotus pulcherrimus., Mitsunaga K., J Biochem. December 1, 1986; 100 (6): 1607-15.


Carbonic anhydrase activity in developing sea urchin embryos with special reference to calcification of spicules., Mitsunaga K., Cell Differ. June 1, 1986; 18 (4): 257-62.


The organic matrix of the skeletal spicule of sea urchin embryos., Benson SC., J Cell Biol. May 1, 1986; 102 (5): 1878-86.


The fate of the small micromeres in sea urchin development., Pehrson JR., Dev Biol. February 1, 1986; 113 (2): 522-6.


Enhancement of spicule formation and calcium uptake by monoclonal antibodies to fibronectin-binding acid polysaccharide in cultured sea urchin embryonic cells., Iwata M., Cell Differ. July 1, 1985; 17 (1): 57-62.


Unequal cleavage and the differentiation of echinoid primary mesenchyme., Langelan RE., Dev Biol. June 1, 1985; 109 (2): 464-75.


Mass isolation and culture of sea urchin micromeres., Harkey MA., In Vitro Cell Dev Biol. February 1, 1985; 21 (2): 108-13.


Three cell recognition changes accompany the ingression of sea urchin primary mesenchyme cells., Fink RD., Dev Biol. January 1, 1985; 107 (1): 66-74.


Micromere-specific cell surface proteins of 16-cell stage sea urchin embryos., De Simone DW., Exp Cell Res. January 1, 1985; 156 (1): 7-14.


Adhesive and migratory behavior of normal and sulfate-deficient sea urchin cells in vitro., Venkatasubramanian K., Exp Cell Res. October 1, 1984; 154 (2): 421-31.


Diffusible factors are responsible for differences in nuclease sensitivity among chromatins originating from different cell types., Chambers SA., Exp Cell Res. September 1, 1984; 154 (1): 213-23.


Collagen metabolism and spicule formation in sea urchin micromeres., Blankenship J., Exp Cell Res. May 1, 1984; 152 (1): 98-104.


Serum effects on the in vitro differentiation of sea urchin micromeres., McCarthy RA., Exp Cell Res. December 1, 1983; 149 (2): 433-41.


The program of protein synthesis during the development of the micromere-primary mesenchyme cell line in the sea urchin embryo., Harkey MA., Dev Biol. November 1, 1983; 100 (1): 12-28.


Molecular biology of the sea urchin embryo., Davidson EH., Science. July 2, 1982; 217 (4554): 17-26.


Cell-cell interactions and the role of micromeres in the control of the mitotic pattern in sea urchin embryos., Andreuccetti P., Prog Clin Biol Res. January 1, 1982; 85 Pt B 21-9.


Structural differences in the chromatin from compartmentalized cells of the sea urchin embryo: differential nuclease accessibility of micromere chromatin., Cognetti G., Nucleic Acids Res. November 11, 1981; 9 (21): 5609-21.


Distribution and redistribution of pigment granules in the development of sea urchin embryos., Tanaka Y., Wilehm Roux Arch Dev Biol. September 1, 1981; 190 (5): 267-273.


Detection of poly A+ RNA in sea urchin eggs and embryos by quantitative in situ hybridization., Angerer LM., Nucleic Acids Res. June 25, 1981; 9 (12): 2819-40.


Limited complexity of the RNA in micromeres of sixteen-cell sea urchin embryos., Ernst SG., Dev Biol. September 1, 1980; 79 (1): 119-27.


Effect of 5-bromodeoxyuridine on differentiation. I. Probability distribution of BUdR-containing DNA-strands in subsequent divisions., Schreuer M., Differentiation. August 18, 1978; 11 (2): 89-101.


Changes in cell surface charges during differentiation of isolated micromeres and mesomeres from sea urchin embryos., Sano K., Dev Biol. October 15, 1977; 60 (2): 404-15.


Kinetics of RNA-synthesis in the 16-cell stage of the sea urchinParacentrotus lividus., Czihak G., Wilehm Roux Arch Dev Biol. March 1, 1977; 182 (1): 59-68.


Distribution of concanavalin A receptor sites on specific populations of embryonic cells., Roberson M., Science. August 22, 1975; 189 (4203): 639-40.


On the system controlling the time fo micromere formation in sea urchin embryos., Dan K., Dev Growth Differ. December 1, 1971; 13 (4): 285-301.


[Morphological and biochemical characterization of the developmental stages of fertilized eggs inSphaerechinus granularis lam : I. Rearing, Morphology and determination of stages]., Müller WE., Wilhelm Roux Arch Entwickl Mech Org. June 1, 1971; 167 (2): 99-117.


Cleavage and differentiation in the sea urchin embryo. Transplantation studies of micromeres., Lönning S., Protoplasma. January 1, 1971; 73 (3): 303-22.


Transplantation of RNA-labeled micromeres into animal halves of sea urchin embryos. A contribution to the problem of embryonic induction., Czihak G., Dev Biol. May 1, 1970; 22 (1): 15-30.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 ???pagination.result.next???