Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (358) Expression Attributions Wiki
ECB-ANAT-43

Papers associated with vegetal hemisphere

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Morphogenesis and gravity in a whole amphibian embryo and in isolated blastomeres of sea urchins., Izumi-Kurotani A., Adv Space Biol Med. January 1, 2003; 9 83-99.


Developmental gene network analysis., Revilla-i-Domingo R., Int J Dev Biol. January 1, 2003; 47 (7-8): 695-703.


Patterning the sea urchin embryo: gene regulatory networks, signaling pathways, and cellular interactions., Angerer LM., Curr Top Dev Biol. January 1, 2003; 53 159-98.


T-brain homologue (HpTb) is involved in the archenteron induction signals of micromere descendant cells in the sea urchin embryo., Fuchikami T., Development. November 1, 2002; 129 (22): 5205-16.


Identification and developmental expression of new biomineralization proteins in the sea urchin Strongylocentrotus purpuratus., Illies MR., Dev Genes Evol. October 1, 2002; 212 (9): 419-31.


The expression of SpRunt during sea urchin embryogenesis., Robertson AJ., Mech Dev. September 1, 2002; 117 (1-2): 327-30.


Pattern formation in a pentameral animal: induction of early adult rudiment development in sea urchins., Minsuk SB., Dev Biol. July 15, 2002; 247 (2): 335-50.


New computational approaches for analysis of cis-regulatory networks., Brown CT., Dev Biol. June 1, 2002; 246 (1): 86-102.


New early zygotic regulators expressed in endomesoderm of sea urchin embryos discovered by differential array hybridization., Ransick A., Dev Biol. June 1, 2002; 246 (1): 132-47.


Patchy interspecific sequence similarities efficiently identify positive cis-regulatory elements in the sea urchin., Yuh CH., Dev Biol. June 1, 2002; 246 (1): 148-61.


A provisional regulatory gene network for specification of endomesoderm in the sea urchin embryo., Davidson EH., Dev Biol. June 1, 2002; 246 (1): 162-90.


A regulatory gene network that directs micromere specification in the sea urchin embryo., Oliveri P., Dev Biol. June 1, 2002; 246 (1): 209-28.


Cloning and developmental expression of a novel, secreted frizzled-related protein from the sea urchin, Strongylocentrotus purpuratus., Illies MR., Mech Dev. April 1, 2002; 113 (1): 61-4.


LvDelta is a mesoderm-inducing signal in the sea urchin embryo and can endow blastomeres with organizer-like properties., Sweet HC., Development. April 1, 2002; 129 (8): 1945-55.


Process of pigment cell specification in the sand dollar, Scaphechinus mirabilis., Kominami T., Dev Growth Differ. April 1, 2002; 44 (2): 113-25.


Role of cell contact in the specification process of pigment founder cells in the sea urchin embryo., Takata H., Zoolog Sci. March 1, 2002; 19 (3): 299-307.


Identification and characterization of bone morphogenetic protein 2/4 gene from the starfish Archaster typicus., Shih LJ., Comp Biochem Physiol B Biochem Mol Biol. February 1, 2002; 131 (2): 143-51.


Transient activation of the micro1 homeobox gene family in the sea urchin ( Hemicentrotus pulcherrimus) micromere., Kitamura K., Dev Genes Evol. February 1, 2002; 212 (1): 1-10.


Potential of veg2 blastomeres to induce endoderm differentiation in sea urchin embryos., Iijima M., Zoolog Sci. January 1, 2002; 19 (1): 81-5.


Expression pattern of Brachyury in the embryo of the sea urchin Paracentrotus lividus., Croce J., Dev Genes Evol. December 1, 2001; 211 (12): 617-9.


The role of Brachyury (T) during gastrulation movements in the sea urchin Lytechinus variegatus., Gross JM., Dev Biol. November 1, 2001; 239 (1): 132-47.


Ectoderm exerts the driving force for gastrulation in the sand dollar Scaphechinus mirabilis., Takata H., Dev Growth Differ. June 1, 2001; 43 (3): 265-74.


Correct Expression of spec2a in the sea urchin embryo requires both Otx and other cis-regulatory elements., Yuh CH., Dev Biol. April 15, 2001; 232 (2): 424-38.


Characterization and developmental expression of the amphioxus homolog of Notch (AmphiNotch): evolutionary conservation of multiple expression domains in amphioxus and vertebrates., Holland LZ., Dev Biol. April 15, 2001; 232 (2): 493-507.


Cis-regulatory logic in the endo16 gene: switching from a specification to a differentiation mode of control., Yuh CH., Development. March 1, 2001; 128 (5): 617-29.


Ca(2+) in specification of vegetal cell fate in early sea urchin embryos., Yazaki I., J Exp Biol. March 1, 2001; 204 (Pt 5): 823-34.


Change in the adhesive properties of blastomeres during early cleavage stages in sea urchin embryo., Masui M., Dev Growth Differ. February 1, 2001; 43 (1): 43-53.


Micromere descendants at the blastula stage are involved in normal archenteron formation in sea urchin embryos., Ishizuka Y., Dev Genes Evol. February 1, 2001; 211 (2): 83-8.


Deuterostome evolution: early development in the enteropneust hemichordate, Ptychodera flava., Henry JQ., Evol Dev. January 1, 2001; 3 (6): 375-90.


A micromere induction signal is activated by beta-catenin and acts through notch to initiate specification of secondary mesenchyme cells in the sea urchin embryo., McClay DR., Development. December 1, 2000; 127 (23): 5113-22.


Expression of spicule matrix proteins in the sea urchin embryo during normal and experimentally altered spiculogenesis., Urry LA., Dev Biol. September 1, 2000; 225 (1): 201-13.


Differential distribution of spicule matrix proteins in the sea urchin embryo skeleton., Kitajima T., Dev Growth Differ. August 1, 2000; 42 (4): 295-306.


Animal-vegetal axis patterning mechanisms in the early sea urchin embryo., Angerer LM., Dev Biol. February 1, 2000; 218 (1): 1-12.


Studies on the potential of micromeres to induce archenteron differentiation in embryos of a direct-developing sand dollar, Peronella japonica., Iijima M., Zygote. January 1, 2000; 8 Suppl 1 S80.


Competence of the animal cap to react with the inductive signal from micromere descendants in the hatching blastula stage of echinoid embryos., Ishizuka Y., Zygote. January 1, 2000; 8 Suppl 1 S81.


The role of micromere signaling in Notch activation and mesoderm specification during sea urchin embryogenesis., Sweet HC., Development. December 1, 1999; 126 (23): 5255-65.


SpSoxB1, a maternally encoded transcription factor asymmetrically distributed among early sea urchin blastomeres., Kenny AP., Development. December 1, 1999; 126 (23): 5473-83.


Phosphorylation-dependent regulation of skeletogenesis in sea urchin micromere-derived cells and embryos., Cervello M., Dev Growth Differ. December 1, 1999; 41 (6): 769-75.


Timing of the potential of micromere-descendants in echinoid embryos to induce endoderm differentiation of mesomere-descendants., Minokawa T., Dev Growth Differ. October 1, 1999; 41 (5): 535-47.


Functional gap junctions in the early sea urchin embryo are localized to the vegetal pole., Yazaki I., Dev Biol. August 15, 1999; 212 (2): 503-10.


Regulative development of the sea urchin embryo: signalling cascades and morphogen gradients., Angerer LM., Semin Cell Dev Biol. June 1, 1999; 10 (3): 327-34.


LvNotch signaling mediates secondary mesenchyme specification in the sea urchin embryo., Sherwood DR., Development. April 1, 1999; 126 (8): 1703-13.


Outgrowth of pseudopodial cables induced by all-trans retinoic acid in micromere-derived cells isolated from sea urchin embryos., Kuno S., Dev Growth Differ. April 1, 1999; 41 (2): 193-9.


Nuclear beta-catenin is required to specify vegetal cell fates in the sea urchin embryo., Logan CY., Development. January 1, 1999; 126 (2): 345-57.


HpEts, an ets-related transcription factor implicated in primary mesenchyme cell differentiation in the sea urchin embryo., Kurokawa D., Mech Dev. January 1, 1999; 80 (1): 41-52.


Unequal divisions at the third cleavage increase the number of primary mesenchyme cells in sea urchin embryos., Kominami T., Dev Growth Differ. October 1, 1998; 40 (5): 545-53.


Disruption of primary mesenchyme cell patterning by misregulated ectodermal expression of SpMsx in sea urchin embryos., Tan H., Dev Biol. September 15, 1998; 201 (2): 230-46.


Specification of cell fate in the sea urchin embryo: summary and some proposed mechanisms., Davidson EH., Development. September 1, 1998; 125 (17): 3269-90.


Sea urchin FGFR muscle-specific expression: posttranscriptional regulation in embryos and adults., McCoon PE., Dev Biol. August 15, 1998; 200 (2): 171-81.


beta-Catenin is essential for patterning the maternally specified animal-vegetal axis in the sea urchin embryo., Wikramanayake AH., Proc Natl Acad Sci U S A. August 4, 1998; 95 (16): 9343-8.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 ???pagination.result.next???