Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (358) Expression Attributions Wiki
ECB-ANAT-43

Papers associated with vegetal hemisphere

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Germ line determinants are not localized early in sea urchin development, but do accumulate in the small micromere lineage., Juliano CE., Dev Biol. December 1, 2006; 300 (1): 406-15.


Genomics and expression profiles of the Hedgehog and Notch signaling pathways in sea urchin development., Walton KD., Dev Biol. December 1, 2006; 300 (1): 153-64.


Protein tyrosine and serine-threonine phosphatases in the sea urchin, Strongylocentrotus purpuratus: identification and potential functions., Byrum CA., Dev Biol. December 1, 2006; 300 (1): 194-218.


Activator of G-protein signaling in asymmetric cell divisions of the sea urchin embryo., Voronina E., Dev Growth Differ. December 1, 2006; 48 (9): 549-57.


Deciphering the underlying mechanism of specification and differentiation: the sea urchin gene regulatory network., Ben-Tabou de-Leon S., Sci STKE. November 14, 2006; 2006 (361): pe47.


The emergence of pattern in embryogenesis: regulation of beta-catenin localization during early sea urchin development., Ettensohn CA., Sci STKE. November 14, 2006; 2006 (361): pe48.


Repression of mesodermal fate by foxa, a key endoderm regulator of the sea urchin embryo., Oliveri P., Development. November 1, 2006; 133 (21): 4173-81.


Nemo-like kinase (NLK) acts downstream of Notch/Delta signalling to downregulate TCF during mesoderm induction in the sea urchin embryo., Röttinger E., Development. November 1, 2006; 133 (21): 4341-53.


Endomesoderm specification in Caenorhabditis elegans and other nematodes., Maduro MF., Bioessays. October 1, 2006; 28 (10): 1010-22.


Expression pattern of three putative RNA-binding proteins during early development of the sea urchin Paracentrotus lividus., Röttinger E., Gene Expr Patterns. October 1, 2006; 6 (8): 864-72.


Hindgut specification and cell-adhesion functions of Sphox11/13b in the endoderm of the sea urchin embryo., Arenas-Mena C., Dev Growth Differ. September 1, 2006; 48 (7): 463-72.


Developmental expression of HpNanos, the Hemicentrotus pulcherrimus homologue of nanos., Fujii T., Gene Expr Patterns. June 1, 2006; 6 (5): 572-7.


cis-Regulatory control of cyclophilin, a member of the ETS-DRI skeletogenic gene battery in the sea urchin embryo., Amore G., Dev Biol. May 15, 2006; 293 (2): 555-64.


Expression and function of blimp1/krox, an alternatively transcribed regulatory gene of the sea urchin endomesoderm network., Livi CB., Dev Biol. May 15, 2006; 293 (2): 513-25.


Subequatorial cytoplasm plays an important role in ectoderm patterning in the sea urchin embryo., Kominami T., Dev Growth Differ. February 1, 2006; 48 (2): 101-15.


cis-Regulatory inputs of the wnt8 gene in the sea urchin endomesoderm network., Minokawa T., Dev Biol. December 15, 2005; 288 (2): 545-58.


The micro1 gene is necessary and sufficient for micromere differentiation and mid/hindgut-inducing activity in the sea urchin embryo., Yamazaki A., Dev Genes Evol. September 1, 2005; 215 (9): 450-59.


Identification of cis-regulatory elements involved in transcriptional regulation of the sea urchin SpFoxB gene., Fung ES., Dev Growth Differ. September 1, 2005; 47 (7): 461-70.


Developmental potential of small micromeres in sea urchin embryos., Kurihara H., Zoolog Sci. August 1, 2005; 22 (8): 845-52.


A microtubule-dependent zone of active RhoA during cleavage plane specification., Bement WM., J Cell Biol. July 4, 2005; 170 (1): 91-101.              


Seawi--a sea urchin piwi/argonaute family member is a component of MT-RNP complexes., Rodriguez AJ., RNA. May 1, 2005; 11 (5): 646-56.


Strongylocentrotus purpuratus transcription factor GATA-E binds to and represses transcription at an Otx-Goosecoid cis-regulatory element within the aboral ectoderm-specific spec2a enhancer., Kiyama T., Dev Biol. April 15, 2005; 280 (2): 436-47.


Gene regulatory networks for development., Levine M., Proc Natl Acad Sci U S A. April 5, 2005; 102 (14): 4936-42.


Exclusive expression of hedgehog in small micromere descendants during early embryogenesis in the sea urchin, Hemicentrotus pulcherrimus., Hara Y., Gene Expr Patterns. April 1, 2005; 5 (4): 503-10.


SoxB1 downregulation in vegetal lineages of sea urchin embryos is achieved by both transcriptional repression and selective protein turnover., Angerer LM., Development. March 1, 2005; 132 (5): 999-1008.


LvGroucho and nuclear beta-catenin functionally compete for Tcf binding to influence activation of the endomesoderm gene regulatory network in the sea urchin embryo., Range RC., Dev Biol. March 1, 2005; 279 (1): 252-67.


Expression of Spgatae, the Strongylocentrotus purpuratus ortholog of vertebrate GATA4/5/6 factors., Lee PY., Gene Expr Patterns. December 1, 2004; 5 (2): 161-5.


Structure, regulation, and function of micro1 in the sea urchin Hemicentrotus pulcherrimus., Nishimura Y., Dev Genes Evol. November 1, 2004; 214 (11): 525-36.


R11: a cis-regulatory node of the sea urchin embryo gene network that controls early expression of SpDelta in micromeres., Revilla-i-Domingo R., Dev Biol. October 15, 2004; 274 (2): 438-51.


SpHnf6, a transcription factor that executes multiple functions in sea urchin embryogenesis., Otim O., Dev Biol. September 15, 2004; 273 (2): 226-43.


Gene regulatory network controlling embryonic specification in the sea urchin., Oliveri P., Curr Opin Genet Dev. August 1, 2004; 14 (4): 351-60.


Gastrulation in the sea urchin embryo: a model system for analyzing the morphogenesis of a monolayered epithelium., Kominami T., Dev Growth Differ. August 1, 2004; 46 (4): 309-26.


A genetic regulatory network for Xenopus mesendoderm formation., Loose M., Dev Biol. July 15, 2004; 271 (2): 467-78.


Nuclear beta-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages., Wikramanayake AH., Genesis. July 1, 2004; 39 (3): 194-205.


Differential stability of beta-catenin along the animal-vegetal axis of the sea urchin embryo mediated by dishevelled., Weitzel HE., Development. June 1, 2004; 131 (12): 2947-56.


An otx cis-regulatory module: a key node in the sea urchin endomesoderm gene regulatory network., Yuh CH., Dev Biol. May 15, 2004; 269 (2): 536-51.


PI3K inhibitors block skeletogenesis but not patterning in sea urchin embryos., Bradham CA., Dev Dyn. April 1, 2004; 229 (4): 713-21.


A Raf/MEK/ERK signaling pathway is required for development of the sea urchin embryo micromere lineage through phosphorylation of the transcription factor Ets., Röttinger E., Development. March 1, 2004; 131 (5): 1075-87.


Mechanisms of calcium elevation in the micromeres of sea urchin embryos., Yazaki I., Biol Cell. March 1, 2004; 96 (2): 153-67.


Isolation and culture of micromeres and primary mesenchyme cells., Wilt FH., Methods Cell Biol. January 1, 2004; 74 273-85.


Developmental gene regulatory network architecture across 500 million years of echinoderm evolution., Hinman VF., Proc Natl Acad Sci U S A. November 11, 2003; 100 (23): 13356-61.


The M-phase-promoting factor modulates the sensitivity of the Ca2+ stores to inositol 1,4,5-trisphosphate via the actin cytoskeleton., Lim D., J Biol Chem. October 24, 2003; 278 (43): 42505-14.


Spdeadringer, a sea urchin embryo gene required separately in skeletogenic and oral ectoderm gene regulatory networks., Amore G., Dev Biol. September 1, 2003; 261 (1): 55-81.


Expression of a gene encoding a Gata transcription factor during embryogenesis of the starfish Asterina miniata., Hinman VF., Gene Expr Patterns. August 1, 2003; 3 (4): 419-22.


Signals from primary mesenchyme cells regulate endoderm differentiation in the sea urchin embryo., Hamada M., Dev Growth Differ. August 1, 2003; 45 (4): 339-50.


Alx1, a member of the Cart1/Alx3/Alx4 subfamily of Paired-class homeodomain proteins, is an essential component of the gene network controlling skeletogenic fate specification in the sea urchin embryo., Ettensohn CA., Development. July 1, 2003; 130 (13): 2917-28.              


Activation of pmar1 controls specification of micromeres in the sea urchin embryo., Oliveri P., Dev Biol. June 1, 2003; 258 (1): 32-43.


Timing of early developmental events in embryos of a tropical sea urchin Echinometra mathaei., Kominami T., Zoolog Sci. May 1, 2003; 20 (5): 617-26.


Specification of secondary mesenchyme-derived cells in relation to the dorso-ventral axis in sea urchin blastulae., Kominami T., Dev Growth Differ. April 1, 2003; 45 (2): 129-42.


Primary mesenchyme cell patterning during the early stages following ingression., Peterson RE., Dev Biol. February 1, 2003; 254 (1): 68-78.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 ???pagination.result.next???