Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (358) Expression Attributions Wiki
ECB-ANAT-43

Papers associated with vegetal hemisphere

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Repression of mesodermal fate by foxa, a key endoderm regulator of the sea urchin embryo., Oliveri P., Development. November 1, 2006; 133 (21): 4173-81.


Nemo-like kinase (NLK) acts downstream of Notch/Delta signalling to downregulate TCF during mesoderm induction in the sea urchin embryo., Röttinger E., Development. November 1, 2006; 133 (21): 4341-53.


Deciphering the underlying mechanism of specification and differentiation: the sea urchin gene regulatory network., Ben-Tabou de-Leon S., Sci STKE. November 14, 2006; 2006 (361): pe47.


The emergence of pattern in embryogenesis: regulation of beta-catenin localization during early sea urchin development., Ettensohn CA., Sci STKE. November 14, 2006; 2006 (361): pe48.


Germ line determinants are not localized early in sea urchin development, but do accumulate in the small micromere lineage., Juliano CE., Dev Biol. December 1, 2006; 300 (1): 406-15.


Genomics and expression profiles of the Hedgehog and Notch signaling pathways in sea urchin development., Walton KD., Dev Biol. December 1, 2006; 300 (1): 153-64.


Protein tyrosine and serine-threonine phosphatases in the sea urchin, Strongylocentrotus purpuratus: identification and potential functions., Byrum CA., Dev Biol. December 1, 2006; 300 (1): 194-218.


Activator of G-protein signaling in asymmetric cell divisions of the sea urchin embryo., Voronina E., Dev Growth Differ. December 1, 2006; 48 (9): 549-57.


Gene regulation: gene control network in development., Ben-Tabou de-Leon S., Annu Rev Biophys Biomol Struct. January 1, 2007; 36 191.


Evolutionary modification of mesenchyme cells in sand dollars in the transition from indirect to direct development., Yajima M., Evol Dev. January 1, 2007; 9 (3): 257-66.


A global view of gene expression in lithium and zinc treated sea urchin embryos: new components of gene regulatory networks., Poustka AJ., Genome Biol. January 1, 2007; 8 (5): R85.                


Modeling development: spikes of the sea urchin., Kühn C., Genome Inform. January 1, 2007; 18 75-84.


The Snail repressor is required for PMC ingression in the sea urchin embryo., Wu SY., Development. March 1, 2007; 134 (6): 1061-70.


Micromere-derived signal regulates larval left-right polarity during sea urchin development., Kitazawa C., J Exp Zool A Ecol Genet Physiol. May 1, 2007; 307 (5): 249-62.


Cortical Isolation from Xenopus laevis Oocytes and Eggs., Sive HL., CSH Protoc. June 1, 2007; 2007 pdb.prot4753.


Xenopus laevis Animal Cap/Vegetal Endoderm Conjugates., Sive HL., CSH Protoc. June 1, 2007; 2007 pdb.prot4747.


Exclusive developmental functions of gatae cis-regulatory modules in the Strongylocentrorus purpuratus embryo., Lee PY., Dev Biol. July 15, 2007; 307 (2): 434-45.


A missing link in the sea urchin embryo gene regulatory network: hesC and the double-negative specification of micromeres., Revilla-i-Domingo R., Proc Natl Acad Sci U S A. July 24, 2007; 104 (30): 12383-8.


Gene regulatory networks and developmental plasticity in the early sea urchin embryo: alternative deployment of the skeletogenic gene regulatory network., Ettensohn CA., Development. September 1, 2007; 134 (17): 3077-87.


SpGataE, a Strongylocentrotus purpuratus ortholog of mammalian Gata4/5/6: protein expression, interaction with putative target gene spec2a, and identification of friend of Gata factor SpFog1., Kiyama T., Dev Genes Evol. September 1, 2007; 217 (9): 651-63.


Ingression of primary mesenchyme cells of the sea urchin embryo: a precisely timed epithelial mesenchymal transition., Wu SY., Birth Defects Res C Embryo Today. December 1, 2007; 81 (4): 241-52.


Analysis of cis-regulatory elements controlling spatio-temporal expression of T-brain gene in sea urchin, Hemicentrotus pulcherrimus., Ochiai H., Mech Dev. January 1, 2008; 125 (1-2): 2-17.


Runx expression is mitogenic and mutually linked to Wnt activity in blastula-stage sea urchin embryos., Robertson AJ., PLoS One. January 1, 2008; 3 (11): e3770.            


Krüppel-like is required for nonskeletogenic mesoderm specification in the sea urchin embryo., Yamazaki A., Dev Biol. February 15, 2008; 314 (2): 433-42.


Vasa protein expression is restricted to the small micromeres of the sea urchin, but is inducible in other lineages early in development., Voronina E., Dev Biol. February 15, 2008; 314 (2): 276-86.


Transfer of a large gene regulatory apparatus to a new developmental address in echinoid evolution., Gao F., Proc Natl Acad Sci U S A. April 22, 2008; 105 (16): 6091-6.


Global regulatory logic for specification of an embryonic cell lineage., Oliveri P., Proc Natl Acad Sci U S A. April 22, 2008; 105 (16): 5955-62.


EGFR signalling is required for Paracentrotus lividus endomesoderm specification., Romancino DP., Arch Biochem Biophys. June 1, 2008; 474 (1): 167-74.


Twist is an essential regulator of the skeletogenic gene regulatory network in the sea urchin embryo., Wu SY., Dev Biol. July 15, 2008; 319 (2): 406-15.


LvNumb works synergistically with Notch signaling to specify non-skeletal mesoderm cells in the sea urchin embryo., Range RC., Development. August 1, 2008; 135 (14): 2445-54.


Actin cytoskeleton modulates calcium signaling during maturation of starfish oocytes., Kyozuka K., Dev Biol. August 15, 2008; 320 (2): 426-35.


Specification process of animal plate in the sea urchin embryo., Sasaki H., Dev Growth Differ. September 1, 2008; 50 (7): 595-606.


cis-Regulatory sequences driving the expression of the Hbox12 homeobox-containing gene in the presumptive aboral ectoderm territory of the Paracentrotus lividus sea urchin embryo., Cavalieri V., Dev Biol. September 15, 2008; 321 (2): 455-69.


Properties of developmental gene regulatory networks., Davidson EH., Proc Natl Acad Sci U S A. December 23, 2008; 105 (51): 20063-6.


Gene regulatory network subcircuit controlling a dynamic spatial pattern of signaling in the sea urchin embryo., Smith J., Proc Natl Acad Sci U S A. December 23, 2008; 105 (51): 20089-94.


Genomic control of patterning., Peter IS., Int J Dev Biol. January 1, 2009; 53 (5-6): 707-16.


Structure-function correlation of micro1 for micromere specification in sea urchin embryos., Yamazaki A., Mech Dev. January 1, 2009; 126 (8-9): 611-23.


An evolutionary transition of Vasa regulation in echinoderms., Juliano CE., Evol Dev. January 1, 2009; 11 (5): 560-73.


Experimentally based sea urchin gene regulatory network and the causal explanation of developmental phenomenology., Ben-Tabou de-Leon S., Wiley Interdiscip Rev Syst Biol Med. January 1, 2009; 1 (2): 237-246.


Gene regulatory network interactions in sea urchin endomesoderm induction., Sethi AJ., PLoS Biol. February 3, 2009; 7 (2): e1000029.                        


Expression patterns of wnt8 orthologs in two sand dollar species with different developmental modes., Nakata H., Gene Expr Patterns. March 1, 2009; 9 (3): 152-7.


Evolutionary modification of specification for the endomesoderm in the direct developing echinoid Peronella japonica: loss of the endomesoderm-inducing signal originating from micromeres., Iijima M., Dev Genes Evol. May 1, 2009; 219 (5): 235-47.


Building developmental gene regulatory networks., Li E., Birth Defects Res C Embryo Today. June 1, 2009; 87 (2): 123-30.


Hedgehog signaling patterns mesoderm in the sea urchin., Walton KD., Dev Biol. July 1, 2009; 331 (1): 26-37.


Guanine nucleotides in the meiotic maturation of starfish oocytes: regulation of the actin cytoskeleton and of Ca(2+) signaling., Kyozuka K., PLoS One. July 20, 2009; 4 (7): e6296.            


Inhibition of spicule elongation in sea urchin embryos by the acetylcholinesterase inhibitor eserine., Ohta K., Comp Biochem Physiol B Biochem Mol Biol. August 1, 2009; 153 (4): 310-6.


Monte Carlo analysis of an ODE Model of the Sea Urchin Endomesoderm Network., Kühn C., BMC Syst Biol. August 23, 2009; 3 83.                      


Evolutionary modification of T-brain (tbr) expression patterns in sand dollar., Minemura K., Gene Expr Patterns. October 1, 2009; 9 (7): 468-74.


Role of the nanos homolog during sea urchin development., Fujii T., Dev Dyn. October 1, 2009; 238 (10): 2511-21.


Suppressor of Hairless (Su(H)) is required for foregut development in the sea urchin embryo., Karasawa K., Zoolog Sci. October 1, 2009; 26 (10): 686-90.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 ???pagination.result.next???