Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (174) Expression Attributions Wiki
ECB-ANAT-19

Papers associated with immune system

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Roles of hesC and gcm in echinoid larval mesenchyme cell development., Yamazaki A., Dev Growth Differ. April 1, 2016; 58 (3): 315-26.


Antimitotic activity of the pyrimidinone derivative py-09 on sea urchin embryonic development., Macedo D., Toxicol In Vitro. March 1, 2016; 31 72-85.


Sea cucumber (Codonopsis pilosula) oligopeptides: immunomodulatory effects based on stimulating Th cells, cytokine secretion and antibody production., He LX., Food Funct. February 1, 2016; 7 (2): 1208-16.


Induction of innate immune gene expression following methyl methanesulfonate-induced DNA damage in sea urchins., Reinardy HC., Biol Lett. February 1, 2016; 12 (2): 20151057.


Robustness and Accuracy in Sea Urchin Developmental Gene Regulatory Networks., Ben-Tabou de-Leon S., Front Genet. January 1, 2016; 7 16.   


Identification and comparative analysis of complement C3-associated microRNAs in immune response of Apostichopus japonicus by high-throughput sequencing., Zhong L., Sci Rep. December 4, 2015; 5 17763.   


De novo assembly and analysis of tissue-specific transcriptomes revealed the tissue-specific genes and profile of immunity from Strongylocentrotus intermedius., Chen Y., Fish Shellfish Immunol. October 1, 2015; 46 (2): 723-36.


The sea urchin Paracentrotus lividus immunological response to chemical pollution exposure: The case of lindane., Stabili L., Chemosphere. September 1, 2015; 134 60-6.


A member of the Tlr family is involved in dsRNA innate immune response in Paracentrotus lividus sea urchin., Russo R., Dev Comp Immunol. August 1, 2015; 51 (2): 271-7.


Comparative Study of Regulatory Circuits in Two Sea Urchin Species Reveals Tight Control of Timing and High Conservation of Expression Dynamics., Gildor T., PLoS Genet. July 31, 2015; 11 (7): e1005435.   


Logics and properties of a genetic regulatory program that drives embryonic muscle development in an echinoderm., Andrikou C., Elife. July 28, 2015; 4   


A review of the immune molecules in the sea cucumber., Xue Z., Fish Shellfish Immunol. May 1, 2015; 44 (1): 1-11.


Sea urchin immune cells as sentinels of environmental stress., Pinsino A., Dev Comp Immunol. March 1, 2015; 49 (1): 198-205.


Determining the monosaccharides of the sea urchin (Paracentrotus lividus) coelomocytes via the CapLC-ESI-MS/MS system and the lectin histochemistry., Şener E., Fish Shellfish Immunol. January 1, 2015; 42 (1): 34-40.


Up in Arms: Immune and Nervous System Response to Sea Star Wasting Disease., Fuess LE., PLoS One. January 1, 2015; 10 (7): e0133053.   


Single sea urchin phagocytes express messages of a single sequence from the diverse Sp185/333 gene family in response to bacterial challenge., Majeske AJ., J Immunol. December 1, 2014; 193 (11): 5678-88.


Evolution of Innate Immunity: Clues from Invertebrates via Fish to Mammals., Buchmann K., Front Immunol. September 23, 2014; 5 459.   


Pigment cell differentiation in sea urchin blastula-derived primary cell cultures., Ageenko NV., Mar Drugs. June 27, 2014; 12 (7): 3874-91.   


Characterization of phenoloxidase from the sea cucumber Apostichopus japonicus., Jiang J., Immunobiology. June 1, 2014; 219 (6): 450-6.


Expression of antimicrobial peptides in coelomocytes and embryos of the green sea urchin (Strongylocentrotus droebachiensis)., Li C., Dev Comp Immunol. March 1, 2014; 43 (1): 106-13.


Phenoloxidase from the sea cucumber Apostichopus japonicus: cDNA cloning, expression and substrate specificity analysis., Jiang J., Fish Shellfish Immunol. February 1, 2014; 36 (2): 344-51.


Mesomere-derived glutamate decarboxylase-expressing blastocoelar mesenchyme cells of sea urchin larvae., Katow H., Biol Open. January 15, 2014; 3 (1): 94-102.   


Determination of sialic acids in immune system cells (coelomocytes) of sea urchin, Paracentrotus lividus, using capillary LC-ESI-MS/MS., İzzetoğlu S., Fish Shellfish Immunol. January 1, 2014; 36 (1): 181-6.   


Myogenesis in the sea urchin embryo: the molecular fingerprint of the myoblast precursors., Andrikou C., Evodevo. December 2, 2013; 4 (1): 33.   


Crosstalk between B16 melanoma cells and B-1 lymphocytes induces global changes in tumor cell gene expression., Xander P., Immunobiology. October 1, 2013; 218 (10): 1293-303.


An ancient role for Gata-1/2/3 and Scl transcription factor homologs in the development of immunocytes., Solek CM., Dev Biol. October 1, 2013; 382 (1): 280-92.


Immune response to a pathogen in corals., Ruiz-Diaz CP., J Theor Biol. September 7, 2013; 332 141-8.


Shotgun proteomics of coelomic fluid from the purple sea urchin, Strongylocentrotus purpuratus., Dheilly NM., Dev Comp Immunol. May 1, 2013; 40 (1): 35-50.


Gender differences in the immune system activities of sea urchin Paracentrotus lividus., Arizza V., Comp Biochem Physiol A Mol Integr Physiol. March 1, 2013; 164 (3): 447-55.


Effects of dietary live yeast Hanseniaspora opuntiae C21 on the immune and disease resistance against Vibrio splendidus infection in juvenile sea cucumber Apostichopus japonicus., Ma Y., Fish Shellfish Immunol. January 1, 2013; 34 (1): 66-73.


Zinc effect on the sea urchin Paracentrotus lividus immunological competence., Pagliara P., Chemosphere. October 1, 2012; 89 (5): 563-8.


Long-term environmental exposure to metals (Cu, Cd, Pb, Zn) activates the immune cell stress response in the common European sea star (Asterias rubens)., Matranga V., Mar Environ Res. May 1, 2012; 76 122-7.


Cis-regulatory logic driving glial cells missing: self-sustaining circuitry in later embryogenesis., Ransick A., Dev Biol. April 15, 2012; 364 (2): 259-67.


Genome-wide polymorphisms show unexpected targets of natural selection., Pespeni MH., Proc Biol Sci. April 7, 2012; 279 (1732): 1412-20.


A comprehensive analysis of Delta signaling in pre-gastrular sea urchin embryos., Materna SC., Dev Biol. April 1, 2012; 364 (1): 77-87.


Synthetic in vivo validation of gene network circuitry., Damle SS., Proc Natl Acad Sci U S A. January 31, 2012; 109 (5): 1548-53.


Characterization of a scavenger receptor cysteine-rich-domain-containing protein of the starfish, Asterina pectinifera: ApSRCR1 acts as an opsonin in the larval and adult innate immune systems., Furukawa R., Dev Comp Immunol. January 1, 2012; 36 (1): 51-61.


Innate immune complexity in the purple sea urchin: diversity of the sp185/333 system., Smith LC., Front Immunol. January 1, 2012; 3 70.   


Dynamic evolution of toll-like receptor multigene families in echinoderms., Buckley KM., Front Immunol. January 1, 2012; 3 136.   


Effective inhibition of a Strongylocentrotus nudus eggs polysaccharide against hepatocellular carcinoma is mediated via immunoregulation in vivo., Wang M., Immunol Lett. December 30, 2011; 141 (1): 74-82.


Crypton transposons: identification of new diverse families and ancient domestication events., Kojima KK., Mob DNA. October 19, 2011; 2 (1): 12.   


Molecular characterization and expression analysis of a complement component 3 in the sea cucumber (Apostichopus japonicus)., Zhou Z., Fish Shellfish Immunol. October 1, 2011; 31 (4): 540-7.


Invertebrate immune diversity., Ghosh J., Dev Comp Immunol. September 1, 2011; 35 (9): 959-74.


Proteome characterization of sea star coelomocytes--the innate immune effector cells of echinoderms., Franco CF., Proteomics. September 1, 2011; 11 (17): 3587-92.


Novel population of embryonic secondary mesenchyme cells in the keyhole sand dollar Astriclypeus manni., Takata H., Dev Growth Differ. June 1, 2011; 53 (5): 625-38.


The evolution and regulation of the mucosal immune complexity in the basal chordate amphioxus., Huang S., J Immunol. February 15, 2011; 186 (4): 2042-55.


Expression of Pigment Cell-Specific Genes in the Ontogenesis of the Sea Urchin Strongylocentrotus intermedius., Ageenko NV., Evid Based Complement Alternat Med. January 1, 2011; 2011 730356.   


An Sp185/333 gene cluster from the purple sea urchin and putative microsatellite-mediated gene diversification., Miller CA., BMC Genomics. October 18, 2010; 11 575.   


Centrocins: isolation and characterization of novel dimeric antimicrobial peptides from the green sea urchin, Strongylocentrotus droebachiensis., Li C., Dev Comp Immunol. September 1, 2010; 34 (9): 959-68.


Cis-regulatory analysis of the sea urchin pigment cell gene polyketide synthase., Calestani C., Dev Biol. April 15, 2010; 340 (2): 249-55.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 ???pagination.result.next???