Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (358) Expression Attributions Wiki
ECB-ANAT-43

Papers associated with vegetal hemisphere

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Expression of an embryonic spicule matrix gene in calcified tissues of adult sea urchins., Richardson W., Dev Biol. March 1, 1989; 132 (1): 266-9.


Evolutionary modification of cell lineage in the direct-developing sea urchin Heliocidaris erythrogramma., Wray GA., Dev Biol. April 1, 1989; 132 (2): 458-70.


Lithium evokes expression of vegetal-specific molecules in the animal blastomeres of sea urchin embryos., Livingston BT., Proc Natl Acad Sci U S A. May 1, 1989; 86 (10): 3669-73.


Embryonic cellular organization: differential restriction of fates as revealed by cell aggregates and lineage markers., Bernacki SH., J Exp Zool. August 1, 1989; 251 (2): 203-16.


Early inductive interactions are involved in restricting cell fates of mesomeres in sea urchin embryos., Henry JJ., Dev Biol. November 1, 1989; 136 (1): 140-53.


[Phorbol ester disrupts the cleavage pattern in sea urchin embryos]., Bozhkova VP., Ontogenez. January 1, 1990; 21 (2): 160-6.


Range and stability of cell fate determination in isolated sea urchin blastomeres., Livingston BT., Development. March 1, 1990; 108 (3): 403-10.


The synthesis and secretion of collagen by cultured sea urchin micromeres., Benson S., Exp Cell Res. May 1, 1990; 188 (1): 141-6.


The influence of cell interactions and tissue mass on differentiation of sea urchin mesomeres., Khaner O., Development. July 1, 1990; 109 (3): 625-34.


Myosin heavy chain accumulates in dissimilar cell types of the macromere lineage in the sea urchin embryo., Wessel GM., Dev Biol. August 1, 1990; 140 (2): 447-54.


Differential behavior of centrosomes in unequally dividing blastomeres during fourth cleavage of sea urchin embryos., Holy J., J Cell Sci. March 1, 1991; 98 ( Pt 3) 423-31.


Tissue-specific, temporal changes in cell adhesion to echinonectin in the sea urchin embryo., Burdsal CA., Dev Biol. April 1, 1991; 144 (2): 327-34.


The use of confocal microscopy and STERECON reconstructions in the analysis of sea urchin embryonic cell division., Summers RG., J Electron Microsc Tech. May 1, 1991; 18 (1): 24-30.


Interactions of different vegetal cells with mesomeres during early stages of sea urchin development., Khaner O., Development. July 1, 1991; 112 (3): 881-90.


Cell movements during the initial phase of gastrulation in the sea urchin embryo., Burke RD., Dev Biol. August 1, 1991; 146 (2): 542-57.


Evidence for the involvement of microtubules, ER, and kinesin in the cortical rotation of fertilized frog eggs., Houliston E., J Cell Biol. September 1, 1991; 114 (5): 1017-28.


Characterization of a cDNA encoding a protein involved in formation of the skeleton during development of the sea urchin Lytechinus pictus., Livingston BT., Dev Biol. December 1, 1991; 148 (2): 473-80.


Macromere cell fates during sea urchin development., Cameron RA., Development. December 1, 1991; 113 (4): 1085-91.


Pattern formation during gastrulation in the sea urchin embryo., McClay DR., Dev Suppl. January 1, 1992; 33-41.


Nuclear migration and spindle formation in the fourth cleavage of sea urchin eggs under the influence of inhibitors., Czihak G., Cell Struct Funct. April 1, 1992; 17 (2): 145-50.


Secondary mesenchyme of the sea urchin embryo: ontogeny of blastocoelar cells., Tamboline CR., J Exp Zool. April 15, 1992; 262 (1): 51-60.


Differential expression of the msp130 gene among skeletal lineage cells in the sea urchin embryo: a three dimensional in situ hybridization analysis., Harkey MA., Mech Dev. May 1, 1992; 37 (3): 173-84.


Centrifugal elutriation of large fragile cells: isolation of RNA from fixed embryonic blastomeres., Nasir A., Anal Biochem. May 15, 1992; 203 (1): 22-6.


Isolation and characterization of cDNA encoding a spicule matrix protein in Hemicentrotus pulcherrimus micromeres., Katoh-Fukui Y., Int J Dev Biol. September 1, 1992; 36 (3): 353-61.


Cell Movements during Gastrulation of Starfish Larvae., Kuraishi R., Biol Bull. October 1, 1992; 183 (2): 258-268.


Analysis of competence in cultured sea urchin micromeres., Page L., Exp Cell Res. December 1, 1992; 203 (2): 305-11.


A complete second gut induced by transplanted micromeres in the sea urchin embryo., Ransick A., Science. February 19, 1993; 259 (5098): 1134-8.


Mesodermal cell interactions in the sea urchin embryo: properties of skeletogenic secondary mesenchyme cells., Ettensohn CA., Development. April 1, 1993; 117 (4): 1275-85.


Studies on the cellular pathway involved in assembly of the embryonic sea urchin spicule., Hwang SP., Exp Cell Res. April 1, 1993; 205 (2): 383-7.


Whole mount in situ hybridization shows Endo 16 to be a marker for the vegetal plate territory in sea urchin embryos., Ransick A., Mech Dev. August 1, 1993; 42 (3): 117-24.


Expression of homeobox-containing genes in the sea urchin (Parancentrotus lividus) embryo., Di Bernardo M., Genetica. January 1, 1994; 94 (2-3): 141-50.


Spatial distribution of two maternal messengers in Paracentrotus lividus during oogenesis and embryogenesis., Di Carlo M., Proc Natl Acad Sci U S A. June 7, 1994; 91 (12): 5622-6.


Micromeres are required for normal vegetal plate specification in sea urchin embryos., Ransick A., Development. October 1, 1995; 121 (10): 3215-22.


Transient appearance of Strongylocentrotus purpuratus Otx in micromere nuclei: cytoplasmic retention of SpOtx possibly mediated through an alpha-actinin interaction., Chuang CK., Dev Genet. January 1, 1996; 19 (3): 231-7.


Modular cis-regulatory organization of Endo16, a gut-specific gene of the sea urchin embryo., Yuh CH., Development. April 1, 1996; 122 (4): 1069-82.


Cloning, expression, and localization of a new member of a Paracentrotus lividus cell surface multigene family., Montana G., Mol Reprod Dev. May 1, 1996; 44 (1): 36-43.


Postembryonic segregation of the germ line in sea urchins in relation to indirect development., Ransick A., Proc Natl Acad Sci U S A. June 25, 1996; 93 (13): 6759-63.


SpFGFR, a new member of the fibroblast growth factor receptor family, is developmentally regulated during early sea urchin development., McCoon PE., J Biol Chem. August 16, 1996; 271 (33): 20119-25.


Variation of cleavage pattern permitting normal development in a sand dollar, Peronella japonica: comparison with other sand dollars., Amemiya S., Dev Genes Evol. September 1, 1996; 206 (2): 125-35.


Early gene expression along the animal-vegetal axis in sea urchin embryoids and grafted embryos., Ghiglione C., Development. October 1, 1996; 122 (10): 3067-74.


Spatial expression of a forkhead homologue in the sea urchin embryo., Harada Y., Mech Dev. December 1, 1996; 60 (2): 163-73.


Very early and transient vegetal-plate expression of SpKrox1, a Krüppel/Krox gene from Stronglyocentrotus purpuratus., Wang W., Mech Dev. December 1, 1996; 60 (2): 185-95.


Expression of spicule matrix protein gene SM30 in embryonic and adult mineralized tissues of sea urchin Hemicentrotus pulcherrimus., Kitajima T., Dev Growth Differ. December 1, 1996; 38 (6): 687-95.


Histological distribution of FR-1, a cyclic RGDS-peptide, binding sites during early embryogenesis, and isolation and initial characterization of FR-1 receptor in the sand dollar embryo., Katow H., Dev Growth Differ. April 1, 1997; 39 (2): 207-19.


The allocation of early blastomeres to the ectoderm and endoderm is variable in the sea urchin embryo., Logan CY., Development. June 1, 1997; 124 (11): 2213-23.


Oral/aboral ectoderm differentiation of the sea urchin embryo depends on a planar or secretory signal from the vegetal hemisphere., Yoshikawa S., Dev Growth Differ. June 1, 1997; 39 (3): 319-27.


Centrifugation does not alter spatial distribution of ''BEP4'' mRNA in paracentrotus lividus EGG., Costa C., FEBS Lett. June 30, 1997; 410 (2-3): 499-501.


LiCl perturbs ectodermal veg1 lineage allocations in Strongylocentrotus purpuratus embryos., Cameron RA., Dev Biol. July 15, 1997; 187 (2): 236-9.


Identification and localization of a sea urchin Notch homologue: insights into vegetal plate regionalization and Notch receptor regulation., Sherwood DR., Development. September 1, 1997; 124 (17): 3363-74.


Polarized distribution of L-type calcium channels in early sea urchin embryos., Dale B., Am J Physiol. September 1, 1997; 273 (3 Pt 1): C822-5.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 ???pagination.result.next???