Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (181) Expression Attributions Wiki
ECB-ANAT-275

Papers associated with mesoderm

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

LvTbx2/3: a T-box family transcription factor involved in formation of the oral/aboral axis of the sea urchin embryo., Gross JM., Development. May 1, 2003; 130 (9): 1989-99.


Activation of pmar1 controls specification of micromeres in the sea urchin embryo., Oliveri P., Dev Biol. June 1, 2003; 258 (1): 32-43.


Neural expression of the Huntington''s disease gene as a chordate evolutionary novelty., Kauffman JS., J Exp Zool B Mol Dev Evol. June 15, 2003; 297 (1): 57-64.


Expression of a gene encoding a Gata transcription factor during embryogenesis of the starfish Asterina miniata., Hinman VF., Gene Expr Patterns. August 1, 2003; 3 (4): 419-22.


Expression and function of a starfish Otx ortholog, AmOtx: a conserved role for Otx proteins in endoderm development that predates divergence of the eleutherozoa., Hinman VF., Mech Dev. October 1, 2003; 120 (10): 1165-76.


Role of the ERK-mediated signaling pathway in mesenchyme formation and differentiation in the sea urchin embryo., Fernandez-Serra M., Dev Biol. April 15, 2004; 268 (2): 384-402.


Self-organization of vertebrate mesoderm based on simple boundary conditions., Green JB., Dev Dyn. November 1, 2004; 231 (3): 576-81.


Expression of Spgatae, the Strongylocentrotus purpuratus ortholog of vertebrate GATA4/5/6 factors., Lee PY., Gene Expr Patterns. December 1, 2004; 5 (2): 161-5.


Major regulatory factors in the evolution of development: the roles of goosecoid and Msx in the evolution of the direct-developing sea urchin Heliocidaris erythrogramma., Wilson KA., Evol Dev. January 1, 2005; 7 (5): 416-28.


A Fringe-modified Notch signal affects specification of mesoderm and endoderm in the sea urchin embryo., Peterson RE., Dev Biol. June 1, 2005; 282 (1): 126-37.


Distinct effectors of platelet-derived growth factor receptor-alpha signaling are required for cell survival during embryogenesis., Van Stry M., Proc Natl Acad Sci U S A. June 7, 2005; 102 (23): 8233-8.


From larval bodies to adult body plans: patterning the development of the presumptive adult ectoderm in the sea urchin larva., Minsuk SB., Dev Genes Evol. August 1, 2005; 215 (8): 383-92.


Developmental potential of small micromeres in sea urchin embryos., Kurihara H., Zoolog Sci. August 1, 2005; 22 (8): 845-52.


Induction and the Turing-Child field in development., Schiffmann Y., Prog Biophys Mol Biol. September 1, 2005; 89 (1): 36-92.


The micro1 gene is necessary and sufficient for micromere differentiation and mid/hindgut-inducing activity in the sea urchin embryo., Yamazaki A., Dev Genes Evol. September 1, 2005; 215 (9): 450-59.


Identification of cis-regulatory elements involved in transcriptional regulation of the sea urchin SpFoxB gene., Fung ES., Dev Growth Differ. September 1, 2005; 47 (7): 461-70.


Nodal signaling and the evolution of deuterostome gastrulation., Chea HK., Dev Dyn. October 1, 2005; 234 (2): 269-78.


Canonical Notch signaling is dispensable for early cell fate specifications in mammals., Shi S., Mol Cell Biol. November 1, 2005; 25 (21): 9503-8.


Expression and function of blimp1/krox, an alternatively transcribed regulatory gene of the sea urchin endomesoderm network., Livi CB., Dev Biol. May 15, 2006; 293 (2): 513-25.


Developmental expression of HpNanos, the Hemicentrotus pulcherrimus homologue of nanos., Fujii T., Gene Expr Patterns. June 1, 2006; 6 (5): 572-7.


cis-regulatory processing of Notch signaling input to the sea urchin glial cells missing gene during mesoderm specification., Ransick A., Dev Biol. September 15, 2006; 297 (2): 587-602.


A homologue of snail is expressed transiently in subsets of mesenchyme cells in the sea urchin embryo and is down-regulated in axis-deficient embryos., Hardin J., Dev Dyn. November 1, 2006; 235 (11): 3121-31.


Nemo-like kinase (NLK) acts downstream of Notch/Delta signalling to downregulate TCF during mesoderm induction in the sea urchin embryo., Röttinger E., Development. November 1, 2006; 133 (21): 4341-53.


The emergence of pattern in embryogenesis: regulation of beta-catenin localization during early sea urchin development., Ettensohn CA., Sci STKE. November 14, 2006; 2006 (361): pe48.


A global view of gene expression in lithium and zinc treated sea urchin embryos: new components of gene regulatory networks., Poustka AJ., Genome Biol. January 1, 2007; 8 (5): R85.                


Modeling development: spikes of the sea urchin., Kühn C., Genome Inform. January 1, 2007; 18 75-84.


The Snail repressor is required for PMC ingression in the sea urchin embryo., Wu SY., Development. March 1, 2007; 134 (6): 1061-70.


Analysis of dishevelled localization and function in the early sea urchin embryo., Leonard JD., Dev Biol. June 1, 2007; 306 (1): 50-65.


Xenopus laevis Keller Explants., Sive HL., CSH Protoc. June 1, 2007; 2007 pdb.prot4749.


Xenopus laevis Animal Cap/Dorsal Mesoderm Conjugates., Sive HL., CSH Protoc. June 1, 2007; 2007 pdb.prot4748.


Xenopus laevis Animal Cap/Vegetal Endoderm Conjugates., Sive HL., CSH Protoc. June 1, 2007; 2007 pdb.prot4747.


Exclusive developmental functions of gatae cis-regulatory modules in the Strongylocentrorus purpuratus embryo., Lee PY., Dev Biol. July 15, 2007; 307 (2): 434-45.


Gene regulatory networks and developmental plasticity in the early sea urchin embryo: alternative deployment of the skeletogenic gene regulatory network., Ettensohn CA., Development. September 1, 2007; 134 (17): 3077-87.


Ingression of primary mesenchyme cells of the sea urchin embryo: a precisely timed epithelial mesenchymal transition., Wu SY., Birth Defects Res C Embryo Today. December 1, 2007; 81 (4): 241-52.


Evolutionary plasticity of developmental gene regulatory network architecture., Hinman VF., Proc Natl Acad Sci U S A. December 4, 2007; 104 (49): 19404-9.


FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis [corrected] and regulate gastrulation during sea urchin development., Röttinger E., Development. January 1, 2008; 135 (2): 353-65.


A conserved role for the nodal signaling pathway in the establishment of dorso-ventral and left-right axes in deuterostomes., Duboc V., J Exp Zool B Mol Dev Evol. January 15, 2008; 310 (1): 41-53.


Krüppel-like is required for nonskeletogenic mesoderm specification in the sea urchin embryo., Yamazaki A., Dev Biol. February 15, 2008; 314 (2): 433-42.


Hydrodynamic simulation of multicellular embryo invagination., Pouille PA., Phys Biol. April 10, 2008; 5 (1): 015005.


Embryonic pattern formation without morphogens., Bolouri H., Bioessays. May 1, 2008; 30 (5): 412-7.


Twist is an essential regulator of the skeletogenic gene regulatory network in the sea urchin embryo., Wu SY., Dev Biol. July 15, 2008; 319 (2): 406-15.


LvNumb works synergistically with Notch signaling to specify non-skeletal mesoderm cells in the sea urchin embryo., Range RC., Development. August 1, 2008; 135 (14): 2445-54.


Gene regulatory network subcircuit controlling a dynamic spatial pattern of signaling in the sea urchin embryo., Smith J., Proc Natl Acad Sci U S A. December 23, 2008; 105 (51): 20089-94.


Axial patterning of the pentaradial adult echinoderm body plan., Minsuk SB., Dev Genes Evol. February 1, 2009; 219 (2): 89-101.


Gene regulatory network interactions in sea urchin endomesoderm induction., Sethi AJ., PLoS Biol. February 3, 2009; 7 (2): e1000029.                        


Nodal signalling is involved in left-right asymmetry in snails., Grande C., Nature. February 19, 2009; 457 (7232): 1007-11.      


Hedgehog signaling patterns mesoderm in the sea urchin., Walton KD., Dev Biol. July 1, 2009; 331 (1): 26-37.


Blocking Dishevelled signaling in the noncanonical Wnt pathway in sea urchins disrupts endoderm formation and spiculogenesis, but not secondary mesoderm formation., Byrum CA., Dev Dyn. July 1, 2009; 238 (7): 1649-65.


Monte Carlo analysis of an ODE Model of the Sea Urchin Endomesoderm Network., Kühn C., BMC Syst Biol. August 23, 2009; 3 83.                      


Suppressor of Hairless (Su(H)) is required for foregut development in the sea urchin embryo., Karasawa K., Zoolog Sci. October 1, 2009; 26 (10): 686-90.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 ???pagination.result.next???