Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (2174) Expression Attributions Wiki
ECB-ANAT-10

Papers associated with embryo

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Accumulation of delta 2-tubulin, a major tubulin variant that cannot be tyrosinated, in neuronal tissues and in stable microtubule assemblies., Paturle-Lafanechère L., J Cell Sci. June 1, 1994; 107 ( Pt 6) 1529-43.


A long polypyrimidine:polypurine sequence in 5'' flanking region of arylsulfatase gene of sea urchin embryo., Yamamoto T., Int J Dev Biol. June 1, 1994; 38 (2): 337-44.


The sporulation-specific enzymes encoded by the DIT1 and DIT2 genes catalyze a two-step reaction leading to a soluble LL-dityrosine-containing precursor of the yeast spore wall., Briza P., Proc Natl Acad Sci U S A. May 10, 1994; 91 (10): 4524-8.


Identification of a cell lineage-specific gene coding for a sea urchin alpha 2(IV)-like collagen chain., Exposito JY., J Biol Chem. May 6, 1994; 269 (18): 13167-71.


Cortical granule biogenesis is active throughout oogenesis in sea urchins., Laidlaw M., Development. May 1, 1994; 120 (5): 1325-33.


Repeated sequence target sites for maternal DNA-binding proteins in genes activated in early sea urchin development., Anderson R., Dev Biol. May 1, 1994; 163 (1): 11-8.


Cell-cycle calcium transients driven by cyclic changes in inositol trisphosphate levels., Ciapa B., Nature. April 28, 1994; 368 (6474): 875-8.


Skeletal pattern is specified autonomously by the primary mesenchyme cells in sea urchin embryos., Armstrong N., Dev Biol. April 1, 1994; 162 (2): 329-38.


Characterization of a homolog of human bone morphogenetic protein 1 in the embryo of the sea urchin, Strongylocentrotus purpuratus., Hwang SP., Development. March 1, 1994; 120 (3): 559-68.


Structure of the sea urchin hatching enzyme gene., Ghiglione C., Eur J Biochem. February 1, 1994; 219 (3): 845-54.


Derivatization of polyvinylidene difluoride membranes for the solid-phase sequence analysis of a phosphorylated sea urchin embryo histone H1 peptide., Rodrigues JD., Anal Biochem. February 1, 1994; 216 (2): 365-72.


Multiple Modes of Asexual Reproduction by Tropical and Subtropical Sea Star Larvae: an Unusual Adaptation for Genet Dispersal and Survival., Jaeckle WB., Biol Bull. February 1, 1994; 186 (1): 62-71.


Cell membrane resealing by a vesicular mechanism similar to neurotransmitter release., Steinhardt RA., Science. January 21, 1994; 263 (5145): 390-3.


Do astral microtubules play a role in metaphase chromosome positioning?, Ito K., Biol Cell. January 1, 1994; 82 (2-3): 95-102.


Expression of homeobox-containing genes in the sea urchin (Parancentrotus lividus) embryo., Di Bernardo M., Genetica. January 1, 1994; 94 (2-3): 141-50.


Ligand-dependent stimulation of introduced mammalian brain receptors alters spicule symmetry and other morphogenetic events in sea urchin embryos., Cameron RA., Mech Dev. January 1, 1994; 45 (1): 31-47.


Phylogeny and expression of axonemal and cytoplasmic dynein genes in sea urchins., Gibbons BH., Mol Biol Cell. January 1, 1994; 5 (1): 57-70.


Dithiothreitol prevents membrane fusion but not centrosome or microtubule organization during the first cell cycles in sea urchins., Schatten H., Cell Motil Cytoskeleton. January 1, 1994; 27 (1): 59-68.


Formation of the adult rudiment of sea urchins is influenced by thyroid hormones., Chino Y., Dev Biol. January 1, 1994; 161 (1): 1-11.


Progressive determination of cell fates along the dorsoventral axis in the sea urchin Heliocidaris erythrogramma., Henry JJ., Rouxs Arch Dev Biol. January 1, 1994; 204 (1): 62-69.


Protein-DNA interactions at putative regulatory regions of two coordinately expressed genes, msp130 and PM27, during skeletogenesis in sea urchin embryos., Raman V., Int J Dev Biol. December 1, 1993; 37 (4): 499-507.


The embryonic ciliated band of the sea urchin, Strongylocentrotus purpuratus derives from both oral and aboral ectoderm., Cameron RA., Dev Biol. December 1, 1993; 160 (2): 369-76.


Highly identical cassettes of gene regulatory elements, genomically repetitive and present in RNA., Nemer M., Proc Natl Acad Sci U S A. November 15, 1993; 90 (22): 10851-5.


Cell-cell interactions regulate skeleton formation in the sea urchin embryo., Armstrong N., Development. November 1, 1993; 119 (3): 833-40.


A clonal analysis of secondary mesenchyme cell fates in the sea urchin embryo., Ruffins SW., Dev Biol. November 1, 1993; 160 (1): 285-8.


Roles of kinesin and kinesin-like proteins in sea urchin embryonic cell division: evaluation using antibody microinjection., Wright BD., J Cell Biol. November 1, 1993; 123 (3): 681-9.


Sea urchin egg 100-kDa dynamin-related protein: identification of and localization to intracellular vesicles., Faire K., Dev Biol. October 1, 1993; 159 (2): 581-94.


Ultrastructural Histochemistry of Marthasterias glacialis (Echinodermata, Asteroidea) Gametes Before and After Fertilization., Sousa M., Biol Bull. October 1, 1993; 185 (2): 225-231.


Possibility of membrane reception of neurotransmitter in sea urchin early embryos., Shmukler YB., Comp Biochem Physiol C Comp Pharmacol Toxicol. September 1, 1993; 106 (1): 269-73.


Size regulation and morphogenesis: a cellular analysis of skeletogenesis in the sea urchin embryo., Ettensohn CA., Development. September 1, 1993; 119 (1): 155-67.


The microvilli and hyaline layer of embryonic asteroid epithelial collar cells: a sensory structure to determine the position of locomotory cilia?, Crawford BJ., Anat Rec. August 1, 1993; 236 (4): 697-709.


Intracellular pH regulation in the early embryo., Baltz JM., Bioessays. August 1, 1993; 15 (8): 523-30.


Whole mount in situ hybridization shows Endo 16 to be a marker for the vegetal plate territory in sea urchin embryos., Ransick A., Mech Dev. August 1, 1993; 42 (3): 117-24.


SpOct, a gene encoding the major octamer-binding protein in sea urchin embryos: expression profile, evolutionary relationships, and DNA binding of expressed protein., Char BR., Dev Biol. August 1, 1993; 158 (2): 350-63.


Matrix metalloproteases of the developing sea urchin embryo., Quigley JP., Differentiation. August 1, 1993; 54 (1): 19-23.


Highly Derived Coelomic and Water-Vascular Morphogenesis in a Starfish with Pelagic Direct Development., Janies DA., Biol Bull. August 1, 1993; 185 (1): 56-76.


Later embryogenesis: regulatory circuitry in morphogenetic fields., Davidson EH., Development. July 1, 1993; 118 (3): 665-90.


Post-translational chemical modifications of proteins--III. Current developments in analytical procedures of identification and quantitation of post-translational chemically modified amino acid(s) and its derivatives., Han KK., Int J Biochem. July 1, 1993; 25 (7): 957-70.


Two distinct, sequence-specific DNA-binding proteins interact independently with the major replication pause region of sea urchin mtDNA., Qureshi SA., Nucleic Acids Res. June 25, 1993; 21 (12): 2801-8.


The SpEGF III gene encodes a member of the fibropellins: EGF repeat-containing proteins that form the apical lamina of the sea urchin embryo., Bisgrove BW., Dev Biol. June 1, 1993; 157 (2): 526-38.


A positive cis-regulatory element with a bicoid target site lies within the sea urchin Spec2a enhancer., Gan L., Dev Biol. May 1, 1993; 157 (1): 119-32.


Expression of type IV collagen-degrading activity during early embryonal development in the sea urchin and the arresting effects of collagen synthesis inhibitors on embryogenesis., Karakiulakis G., J Cell Biochem. May 1, 1993; 52 (1): 92-106.


Stereo-specific inhibition of sea urchin envelysin (hatching enzyme) by a synthetic autoinhibitor peptide with a cysteine-switch consensus sequence., Nomura K., FEBS Lett. April 19, 1993; 321 (1): 84-8.


Improved preservation of ultrastructure in difficult-to-fix organisms by high pressure freezing and freeze substitution: I. Drosophila melanogaster and Strongylocentrotus purpuratus embryos., McDonald K., Microsc Res Tech. April 15, 1993; 24 (6): 465-73.


Developmental potential of muscle cell progenitors and the myogenic factor SUM-1 in the sea urchin embryo., Venuti JM., Mech Dev. April 1, 1993; 41 (1): 3-14.


Mesodermal cell interactions in the sea urchin embryo: properties of skeletogenic secondary mesenchyme cells., Ettensohn CA., Development. April 1, 1993; 117 (4): 1275-85.


Studies on the cellular pathway involved in assembly of the embryonic sea urchin spicule., Hwang SP., Exp Cell Res. April 1, 1993; 205 (2): 383-7.


Differential expression and function of cadherin-like proteins in the sea urchin embryo., Ghersi G., Mech Dev. April 1, 1993; 41 (1): 47-55.


The potency of the first two cleavage cells in echinoderm development: the experiments of Driesch revisited., Khaner O., Rouxs Arch Dev Biol. April 1, 1993; 202 (4): 193-197.


Degradation of an extracellular matrix: sea urchin hatching enzyme removes cortical granule-derived proteins from the fertilization envelope., Mozingo NM., J Cell Sci. March 1, 1993; 104 ( Pt 3) 929-38.

???pagination.result.page??? ???pagination.result.prev??? 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 ???pagination.result.next???