Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (2174) Expression Attributions Wiki
ECB-ANAT-10

Papers associated with embryo

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Identification of new skeletogenic genes of the sea urchin embryo by use of conserved sequence motifs among the SM50 gene family., Lee YH., Zygote. January 1, 2000; 8 Suppl 1 S74.


Studies on the potential of micromeres to induce archenteron differentiation in embryos of a direct-developing sand dollar, Peronella japonica., Iijima M., Zygote. January 1, 2000; 8 Suppl 1 S80.


Morphogenesis of exogut isolated from vegetalised embryo of sea urchin., Kamata Y., Zygote. January 1, 2000; 8 Suppl 1 S84.


Novel gene expression patterns in hybrid embryos between species with different modes of development., Nielsen MG., Evol Dev. January 1, 2000; 2 (3): 133-44.


Modularity and dissociation in the evolution of gene expression territories in development., Raff RA., Evol Dev. January 1, 2000; 2 (2): 102-13.


Enzymatic conversion of cyclic dipeptides to dehydro derivatives that inhibit cell division., Kanzaki H., J Biosci Bioeng. January 1, 2000; 90 (1): 86-9.


Studies on the cellular basis of morphogenesis in the sea urchin embryo. Directed movements of primary mesenchyme cells in normal and vegetalized larvae., Gustafson T., Exp Cell Res. December 15, 1999; 253 (2): 288-95.


The role of micromere signaling in Notch activation and mesoderm specification during sea urchin embryogenesis., Sweet HC., Development. December 1, 1999; 126 (23): 5255-65.


SpSoxB1, a maternally encoded transcription factor asymmetrically distributed among early sea urchin blastomeres., Kenny AP., Development. December 1, 1999; 126 (23): 5473-83.


Microinjection of an antibody to the Ku protein arrests development in sea urchin embryos., Kanungo J., Biol Bull. December 1, 1999; 197 (3): 341-7.


Phosphorylation-dependent regulation of skeletogenesis in sea urchin micromere-derived cells and embryos., Cervello M., Dev Growth Differ. December 1, 1999; 41 (6): 769-75.


Caulerpenyne blocks MBP kinase activation controlling mitosis in sea urchin eggs., Pesando D., Eur J Cell Biol. December 1, 1999; 78 (12): 903-10.


Lectin histochemistry of the hyaline layer around the larvae of Patiriella species (Asteroidea) with different developmental modes., Cerra A., J Morphol. November 1, 1999; 242 (2): 91-9.


Mechanism of Ca2+ release at fertilization in mammals., Swann K., J Exp Zool. October 15, 1999; 285 (3): 267-75.


A view from the genome: spatial control of transcription in sea urchin development., Davidson EH., Curr Opin Genet Dev. October 1, 1999; 9 (5): 530-41.


Timing of the potential of micromere-descendants in echinoid embryos to induce endoderm differentiation of mesomere-descendants., Minokawa T., Dev Growth Differ. October 1, 1999; 41 (5): 535-47.


Parameters that specify the timing of cytokinesis., Shuster CB., J Cell Biol. September 6, 1999; 146 (5): 981-92.              


EST analysis of gene expression in early cleavage-stage sea urchin embryos., Lee YH., Development. September 1, 1999; 126 (17): 3857-67.


Ultrastructural localization of proteins involved in sea urchin biomineralization., Ameye L., J Histochem Cytochem. September 1, 1999; 47 (9): 1189-200.


Temperature dependence of membrane lipid composition in early blastula embryos of Lytechinus pictus: selective sorting of phospholipids into nascent plasma membranes., Tremper KE., J Membr Biol. September 1, 1999; 171 (1): 47-53.


A method of microinjection: delivering monoclonal antibody 1223 into sea urchin embryos., Cho JW., Mol Cells. August 31, 1999; 9 (4): 455-8.


Requirement of SpOtx in cell fate decisions in the sea urchin embryo and possible role as a mediator of beta-catenin signaling., Li X., Dev Biol. August 15, 1999; 212 (2): 425-39.


Functional gap junctions in the early sea urchin embryo are localized to the vegetal pole., Yazaki I., Dev Biol. August 15, 1999; 212 (2): 503-10.


Expression of the sea urchin MyoD homologue, SUM1, is not restricted to the myogenic lineage during embryogenesis., Beach RL., Mech Dev. August 1, 1999; 86 (1-2): 209-12.


Cell movements in the sea urchin embryo., Ettensohn CA., Curr Opin Genet Dev. August 1, 1999; 9 (4): 461-5.


Absence of furrowing activity following regional cortical tension reduction in sand dollar blastomere and fertilized egg fragment surfaces., Rappaport R., Dev Growth Differ. August 1, 1999; 41 (4): 441-7.


Association of the sea urchin EGF-related peptide, EGIP-D, with fasciclin I-related ECM proteins from the sea urchin Anthocidaris crassispina., Hirate Y., Dev Growth Differ. August 1, 1999; 41 (4): 483-94.


The primary and higher order structures of sea urchin ovoperoxidase as determined by cDNA cloning and predicted by homology modeling., Nomura K., Arch Biochem Biophys. July 15, 1999; 367 (2): 173-84.


Apextrin, a novel extracellular protein associated with larval ectoderm evolution in Heliocidaris erythrogramma., Haag ES., Dev Biol. July 1, 1999; 211 (1): 77-87.


A putative role for carbohydrates in sea urchin gastrulation., Latham VH., Acta Histochem. July 1, 1999; 101 (3): 293-303.


Matrix and mineral in the sea urchin larval skeleton., Wilt FH., J Struct Biol. June 30, 1999; 126 (3): 216-26.


Hbox1 and Hbox7 are involved in pattern formation in sea urchin embryos., Ishii M., Dev Growth Differ. June 1, 1999; 41 (3): 241-52.


Lim1 related homeobox gene (HpLim1) expressed in sea urchin embryos., Kawasaki T., Dev Growth Differ. June 1, 1999; 41 (3): 273-82.


SM37, a skeletogenic gene of the sea urchin embryo linked to the SM50 gene., Lee YH., Dev Growth Differ. June 1, 1999; 41 (3): 303-12.


How to grow a gut: ontogeny of the endoderm in the sea urchin embryo., Wessel GM., Bioessays. June 1, 1999; 21 (6): 459-71.


Regulative development of the sea urchin embryo: signalling cascades and morphogen gradients., Angerer LM., Semin Cell Dev Biol. June 1, 1999; 10 (3): 327-34.


Function and evolution of Otx proteins., Klein WH., Biochem Biophys Res Commun. May 10, 1999; 258 (2): 229-33.


Spatially restricted expression of PlOtp, a Paracentrotus lividus orthopedia-related homeobox gene, is correlated with oral ectodermal patterning and skeletal morphogenesis in late-cleavage sea urchin embryos., Di Bernardo M., Development. May 1, 1999; 126 (10): 2171-9.


Role of phospholipase Cgamma at fertilization and during mitosis in sea urchin eggs and embryos., Shearer J., Development. May 1, 1999; 126 (10): 2273-84.


Cortical granule translocation during maturation of starfish oocytes requires cytoskeletal rearrangement triggered by InsP3-mediated Ca2+ release., Santella L., Exp Cell Res. May 1, 1999; 248 (2): 567-74.


LvNotch signaling mediates secondary mesenchyme specification in the sea urchin embryo., Sherwood DR., Development. April 1, 1999; 126 (8): 1703-13.


Spatially regulated SpEts4 transcription factor activity along the sea urchin embryo animal-vegetal axis., Wei Z., Development. April 1, 1999; 126 (8): 1729-37.


Model peptide studies of sequence repeats derived from the intracrystalline biomineralization protein, SM50. I. GVGGR and GMGGQ repeats., Xu G., Biopolymers. April 1, 1999; 49 (4): 303-12.


Pattern of Brachyury gene expression in starfish embryos resembles that of hemichordate embryos but not of sea urchin embryos., Shoguchi E., Mech Dev. April 1, 1999; 82 (1-2): 185-9.


Expression pattern of Brachyury and Not in the sea urchin: comparative implications for the origins of mesoderm in the basal deuterostomes., Peterson KJ., Dev Biol. March 15, 1999; 207 (2): 419-31.


alphaSU2, an epithelial integrin that binds laminin in the sea urchin embryo., Hertzler PL., Dev Biol. March 1, 1999; 207 (1): 1-13.


Cellular control over spicule formation in sea urchin embryos: A structural approach., Beniash E., J Struct Biol. March 1, 1999; 125 (1): 50-62.


Developmental characterization of the gene for laminin alpha-chain in sea urchin embryos., Benson S., Mech Dev. March 1, 1999; 81 (1-2): 37-49.


Identification of a new sea urchin ets protein, SpEts4, by yeast one-hybrid screening with the hatching enzyme promoter., Wei Z., Mol Cell Biol. February 1, 1999; 19 (2): 1271-8.


Regulation of BMP signaling by the BMP1/TLD-related metalloprotease, SpAN., Wardle FC., Dev Biol. February 1, 1999; 206 (1): 63-72.

???pagination.result.page??? ???pagination.result.prev??? 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 ???pagination.result.next???