Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (227) Expression Attributions Wiki
ECB-ANAT-124

Papers associated with micromere

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

The influence of cell interactions and tissue mass on differentiation of sea urchin mesomeres., Khaner O., Development. July 1, 1990; 109 (3): 625-34.


Differential behavior of centrosomes in unequally dividing blastomeres during fourth cleavage of sea urchin embryos., Holy J., J Cell Sci. March 1, 1991; 98 ( Pt 3) 423-31.


Tissue-specific, temporal changes in cell adhesion to echinonectin in the sea urchin embryo., Burdsal CA., Dev Biol. April 1, 1991; 144 (2): 327-34.


The use of confocal microscopy and STERECON reconstructions in the analysis of sea urchin embryonic cell division., Summers RG., J Electron Microsc Tech. May 1, 1991; 18 (1): 24-30.


Interactions of different vegetal cells with mesomeres during early stages of sea urchin development., Khaner O., Development. July 1, 1991; 112 (3): 881-90.


Characterization of a cDNA encoding a protein involved in formation of the skeleton during development of the sea urchin Lytechinus pictus., Livingston BT., Dev Biol. December 1, 1991; 148 (2): 473-80.


Pattern formation during gastrulation in the sea urchin embryo., McClay DR., Dev Suppl. January 1, 1992; 33-41.


Differential expression of the msp130 gene among skeletal lineage cells in the sea urchin embryo: a three dimensional in situ hybridization analysis., Harkey MA., Mech Dev. May 1, 1992; 37 (3): 173-84.


Centrifugal elutriation of large fragile cells: isolation of RNA from fixed embryonic blastomeres., Nasir A., Anal Biochem. May 15, 1992; 203 (1): 22-6.


Isolation and characterization of cDNA encoding a spicule matrix protein in Hemicentrotus pulcherrimus micromeres., Katoh-Fukui Y., Int J Dev Biol. September 1, 1992; 36 (3): 353-61.


Analysis of competence in cultured sea urchin micromeres., Page L., Exp Cell Res. December 1, 1992; 203 (2): 305-11.


A complete second gut induced by transplanted micromeres in the sea urchin embryo., Ransick A., Science. February 19, 1993; 259 (5098): 1134-8.


Mesodermal cell interactions in the sea urchin embryo: properties of skeletogenic secondary mesenchyme cells., Ettensohn CA., Development. April 1, 1993; 117 (4): 1275-85.


Studies on the cellular pathway involved in assembly of the embryonic sea urchin spicule., Hwang SP., Exp Cell Res. April 1, 1993; 205 (2): 383-7.


Spatial distribution of two maternal messengers in Paracentrotus lividus during oogenesis and embryogenesis., Di Carlo M., Proc Natl Acad Sci U S A. June 7, 1994; 91 (12): 5622-6.


Micromeres are required for normal vegetal plate specification in sea urchin embryos., Ransick A., Development. October 1, 1995; 121 (10): 3215-22.


Transient appearance of Strongylocentrotus purpuratus Otx in micromere nuclei: cytoplasmic retention of SpOtx possibly mediated through an alpha-actinin interaction., Chuang CK., Dev Genet. January 1, 1996; 19 (3): 231-7.


Cloning, expression, and localization of a new member of a Paracentrotus lividus cell surface multigene family., Montana G., Mol Reprod Dev. May 1, 1996; 44 (1): 36-43.


Postembryonic segregation of the germ line in sea urchins in relation to indirect development., Ransick A., Proc Natl Acad Sci U S A. June 25, 1996; 93 (13): 6759-63.


Variation of cleavage pattern permitting normal development in a sand dollar, Peronella japonica: comparison with other sand dollars., Amemiya S., Dev Genes Evol. September 1, 1996; 206 (2): 125-35.


Early gene expression along the animal-vegetal axis in sea urchin embryoids and grafted embryos., Ghiglione C., Development. October 1, 1996; 122 (10): 3067-74.


Very early and transient vegetal-plate expression of SpKrox1, a Krüppel/Krox gene from Stronglyocentrotus purpuratus., Wang W., Mech Dev. December 1, 1996; 60 (2): 185-95.


Expression of spicule matrix protein gene SM30 in embryonic and adult mineralized tissues of sea urchin Hemicentrotus pulcherrimus., Kitajima T., Dev Growth Differ. December 1, 1996; 38 (6): 687-95.


Polarized distribution of L-type calcium channels in early sea urchin embryos., Dale B., Am J Physiol. September 1, 1997; 273 (3 Pt 1): C822-5.


Archenteron precursor cells can organize secondary axial structures in the sea urchin embryo., Benink H., Development. September 1, 1997; 124 (18): 3461-70.


Temporal-spatial expression of two Paracentrotus lividus cell surface proteins., Romancino DP., Cell Biol Int. January 1, 1998; 22 (4): 305-11.


A presumptive developmental role for a sea urchin cyclin B splice variant., Lozano JC., J Cell Biol. January 26, 1998; 140 (2): 283-93.                        


Cells are added to the archenteron during and following secondary invagination in the sea urchin Lytechinus variegatus., Martins GG., Dev Biol. June 15, 1998; 198 (2): 330-42.


Chlorpropham [isopropyl N-(3-chlorophenyl) carbamate] disrupts microtubule organization, cell division, and early development of sea urchin embryos., Holy J., J Toxicol Environ Health A. June 26, 1998; 54 (4): 319-33.


The dynamics and regulation of mesenchymal cell fusion in the sea urchin embryo., Hodor PG., Dev Biol. July 1, 1998; 199 (1): 111-24.


Differential expression of sea urchin Otx isoform (hpOtxE and HpOtxL) mRNAs during early development., Mitsunaga-Nakatsubo K., Int J Dev Biol. July 1, 1998; 42 (5): 645-51.


beta-Catenin is essential for patterning the maternally specified animal-vegetal axis in the sea urchin embryo., Wikramanayake AH., Proc Natl Acad Sci U S A. August 4, 1998; 95 (16): 9343-8.


Disruption of primary mesenchyme cell patterning by misregulated ectodermal expression of SpMsx in sea urchin embryos., Tan H., Dev Biol. September 15, 1998; 201 (2): 230-46.


Unequal divisions at the third cleavage increase the number of primary mesenchyme cells in sea urchin embryos., Kominami T., Dev Growth Differ. October 1, 1998; 40 (5): 545-53.


Nuclear beta-catenin is required to specify vegetal cell fates in the sea urchin embryo., Logan CY., Development. January 1, 1999; 126 (2): 345-57.


HpEts, an ets-related transcription factor implicated in primary mesenchyme cell differentiation in the sea urchin embryo., Kurokawa D., Mech Dev. January 1, 1999; 80 (1): 41-52.


Outgrowth of pseudopodial cables induced by all-trans retinoic acid in micromere-derived cells isolated from sea urchin embryos., Kuno S., Dev Growth Differ. April 1, 1999; 41 (2): 193-9.


Regulative development of the sea urchin embryo: signalling cascades and morphogen gradients., Angerer LM., Semin Cell Dev Biol. June 1, 1999; 10 (3): 327-34.


Functional gap junctions in the early sea urchin embryo are localized to the vegetal pole., Yazaki I., Dev Biol. August 15, 1999; 212 (2): 503-10.


Timing of the potential of micromere-descendants in echinoid embryos to induce endoderm differentiation of mesomere-descendants., Minokawa T., Dev Growth Differ. October 1, 1999; 41 (5): 535-47.


The role of micromere signaling in Notch activation and mesoderm specification during sea urchin embryogenesis., Sweet HC., Development. December 1, 1999; 126 (23): 5255-65.


SpSoxB1, a maternally encoded transcription factor asymmetrically distributed among early sea urchin blastomeres., Kenny AP., Development. December 1, 1999; 126 (23): 5473-83.


Phosphorylation-dependent regulation of skeletogenesis in sea urchin micromere-derived cells and embryos., Cervello M., Dev Growth Differ. December 1, 1999; 41 (6): 769-75.


Studies on the potential of micromeres to induce archenteron differentiation in embryos of a direct-developing sand dollar, Peronella japonica., Iijima M., Zygote. January 1, 2000; 8 Suppl 1 S80.


Competence of the animal cap to react with the inductive signal from micromere descendants in the hatching blastula stage of echinoid embryos., Ishizuka Y., Zygote. January 1, 2000; 8 Suppl 1 S81.


Animal-vegetal axis patterning mechanisms in the early sea urchin embryo., Angerer LM., Dev Biol. February 1, 2000; 218 (1): 1-12.


Differential distribution of spicule matrix proteins in the sea urchin embryo skeleton., Kitajima T., Dev Growth Differ. August 1, 2000; 42 (4): 295-306.


Expression of spicule matrix proteins in the sea urchin embryo during normal and experimentally altered spiculogenesis., Urry LA., Dev Biol. September 1, 2000; 225 (1): 201-13.


A micromere induction signal is activated by beta-catenin and acts through notch to initiate specification of secondary mesenchyme cells in the sea urchin embryo., McClay DR., Development. December 1, 2000; 127 (23): 5113-22.


Deuterostome evolution: early development in the enteropneust hemichordate, Ptychodera flava., Henry JQ., Evol Dev. January 1, 2001; 3 (6): 375-90.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 ???pagination.result.next???