Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (227) Expression Attributions Wiki
ECB-ANAT-124

Papers associated with micromere

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Change in the adhesive properties of blastomeres during early cleavage stages in sea urchin embryo., Masui M., Dev Growth Differ. February 1, 2001; 43 (1): 43-53.


Micromere descendants at the blastula stage are involved in normal archenteron formation in sea urchin embryos., Ishizuka Y., Dev Genes Evol. February 1, 2001; 211 (2): 83-8.


Ca(2+) in specification of vegetal cell fate in early sea urchin embryos., Yazaki I., J Exp Biol. March 1, 2001; 204 (Pt 5): 823-34.


The role of Brachyury (T) during gastrulation movements in the sea urchin Lytechinus variegatus., Gross JM., Dev Biol. November 1, 2001; 239 (1): 132-47.


Identification and characterization of bone morphogenetic protein 2/4 gene from the starfish Archaster typicus., Shih LJ., Comp Biochem Physiol B Biochem Mol Biol. February 1, 2002; 131 (2): 143-51.


Transient activation of the micro1 homeobox gene family in the sea urchin ( Hemicentrotus pulcherrimus) micromere., Kitamura K., Dev Genes Evol. February 1, 2002; 212 (1): 1-10.


Role of cell contact in the specification process of pigment founder cells in the sea urchin embryo., Takata H., Zoolog Sci. March 1, 2002; 19 (3): 299-307.


LvDelta is a mesoderm-inducing signal in the sea urchin embryo and can endow blastomeres with organizer-like properties., Sweet HC., Development. April 1, 2002; 129 (8): 1945-55.


Process of pigment cell specification in the sand dollar, Scaphechinus mirabilis., Kominami T., Dev Growth Differ. April 1, 2002; 44 (2): 113-25.


New early zygotic regulators expressed in endomesoderm of sea urchin embryos discovered by differential array hybridization., Ransick A., Dev Biol. June 1, 2002; 246 (1): 132-47.


A provisional regulatory gene network for specification of endomesoderm in the sea urchin embryo., Davidson EH., Dev Biol. June 1, 2002; 246 (1): 162-90.


A regulatory gene network that directs micromere specification in the sea urchin embryo., Oliveri P., Dev Biol. June 1, 2002; 246 (1): 209-28.


Identification and developmental expression of new biomineralization proteins in the sea urchin Strongylocentrotus purpuratus., Illies MR., Dev Genes Evol. October 1, 2002; 212 (9): 419-31.


T-brain homologue (HpTb) is involved in the archenteron induction signals of micromere descendant cells in the sea urchin embryo., Fuchikami T., Development. November 1, 2002; 129 (22): 5205-16.


Morphogenesis and gravity in a whole amphibian embryo and in isolated blastomeres of sea urchins., Izumi-Kurotani A., Adv Space Biol Med. January 1, 2003; 9 83-99.


Patterning the sea urchin embryo: gene regulatory networks, signaling pathways, and cellular interactions., Angerer LM., Curr Top Dev Biol. January 1, 2003; 53 159-98.


Primary mesenchyme cell patterning during the early stages following ingression., Peterson RE., Dev Biol. February 1, 2003; 254 (1): 68-78.


Specification of secondary mesenchyme-derived cells in relation to the dorso-ventral axis in sea urchin blastulae., Kominami T., Dev Growth Differ. April 1, 2003; 45 (2): 129-42.


Activation of pmar1 controls specification of micromeres in the sea urchin embryo., Oliveri P., Dev Biol. June 1, 2003; 258 (1): 32-43.


Alx1, a member of the Cart1/Alx3/Alx4 subfamily of Paired-class homeodomain proteins, is an essential component of the gene network controlling skeletogenic fate specification in the sea urchin embryo., Ettensohn CA., Development. July 1, 2003; 130 (13): 2917-28.              


Signals from primary mesenchyme cells regulate endoderm differentiation in the sea urchin embryo., Hamada M., Dev Growth Differ. August 1, 2003; 45 (4): 339-50.


Spdeadringer, a sea urchin embryo gene required separately in skeletogenic and oral ectoderm gene regulatory networks., Amore G., Dev Biol. September 1, 2003; 261 (1): 55-81.


Isolation and culture of micromeres and primary mesenchyme cells., Wilt FH., Methods Cell Biol. January 1, 2004; 74 273-85.


A Raf/MEK/ERK signaling pathway is required for development of the sea urchin embryo micromere lineage through phosphorylation of the transcription factor Ets., Röttinger E., Development. March 1, 2004; 131 (5): 1075-87.


Mechanisms of calcium elevation in the micromeres of sea urchin embryos., Yazaki I., Biol Cell. March 1, 2004; 96 (2): 153-67.


PI3K inhibitors block skeletogenesis but not patterning in sea urchin embryos., Bradham CA., Dev Dyn. April 1, 2004; 229 (4): 713-21.


Nuclear beta-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages., Wikramanayake AH., Genesis. July 1, 2004; 39 (3): 194-205.


SpHnf6, a transcription factor that executes multiple functions in sea urchin embryogenesis., Otim O., Dev Biol. September 15, 2004; 273 (2): 226-43.


R11: a cis-regulatory node of the sea urchin embryo gene network that controls early expression of SpDelta in micromeres., Revilla-i-Domingo R., Dev Biol. October 15, 2004; 274 (2): 438-51.


Structure, regulation, and function of micro1 in the sea urchin Hemicentrotus pulcherrimus., Nishimura Y., Dev Genes Evol. November 1, 2004; 214 (11): 525-36.


SoxB1 downregulation in vegetal lineages of sea urchin embryos is achieved by both transcriptional repression and selective protein turnover., Angerer LM., Development. March 1, 2005; 132 (5): 999-1008.


Exclusive expression of hedgehog in small micromere descendants during early embryogenesis in the sea urchin, Hemicentrotus pulcherrimus., Hara Y., Gene Expr Patterns. April 1, 2005; 5 (4): 503-10.


Seawi--a sea urchin piwi/argonaute family member is a component of MT-RNP complexes., Rodriguez AJ., RNA. May 1, 2005; 11 (5): 646-56.


A microtubule-dependent zone of active RhoA during cleavage plane specification., Bement WM., J Cell Biol. July 4, 2005; 170 (1): 91-101.              


Developmental potential of small micromeres in sea urchin embryos., Kurihara H., Zoolog Sci. August 1, 2005; 22 (8): 845-52.


The micro1 gene is necessary and sufficient for micromere differentiation and mid/hindgut-inducing activity in the sea urchin embryo., Yamazaki A., Dev Genes Evol. September 1, 2005; 215 (9): 450-59.


cis-Regulatory inputs of the wnt8 gene in the sea urchin endomesoderm network., Minokawa T., Dev Biol. December 15, 2005; 288 (2): 545-58.


Subequatorial cytoplasm plays an important role in ectoderm patterning in the sea urchin embryo., Kominami T., Dev Growth Differ. February 1, 2006; 48 (2): 101-15.


cis-Regulatory control of cyclophilin, a member of the ETS-DRI skeletogenic gene battery in the sea urchin embryo., Amore G., Dev Biol. May 15, 2006; 293 (2): 555-64.


Expression and function of blimp1/krox, an alternatively transcribed regulatory gene of the sea urchin endomesoderm network., Livi CB., Dev Biol. May 15, 2006; 293 (2): 513-25.


Developmental expression of HpNanos, the Hemicentrotus pulcherrimus homologue of nanos., Fujii T., Gene Expr Patterns. June 1, 2006; 6 (5): 572-7.


Germ line determinants are not localized early in sea urchin development, but do accumulate in the small micromere lineage., Juliano CE., Dev Biol. December 1, 2006; 300 (1): 406-15.


Activator of G-protein signaling in asymmetric cell divisions of the sea urchin embryo., Voronina E., Dev Growth Differ. December 1, 2006; 48 (9): 549-57.


Evolutionary modification of mesenchyme cells in sand dollars in the transition from indirect to direct development., Yajima M., Evol Dev. January 1, 2007; 9 (3): 257-66.


The Snail repressor is required for PMC ingression in the sea urchin embryo., Wu SY., Development. March 1, 2007; 134 (6): 1061-70.


Micromere-derived signal regulates larval left-right polarity during sea urchin development., Kitazawa C., J Exp Zool A Ecol Genet Physiol. May 1, 2007; 307 (5): 249-62.


A missing link in the sea urchin embryo gene regulatory network: hesC and the double-negative specification of micromeres., Revilla-i-Domingo R., Proc Natl Acad Sci U S A. July 24, 2007; 104 (30): 12383-8.


Gene regulatory networks and developmental plasticity in the early sea urchin embryo: alternative deployment of the skeletogenic gene regulatory network., Ettensohn CA., Development. September 1, 2007; 134 (17): 3077-87.


Analysis of cis-regulatory elements controlling spatio-temporal expression of T-brain gene in sea urchin, Hemicentrotus pulcherrimus., Ochiai H., Mech Dev. January 1, 2008; 125 (1-2): 2-17.


Krüppel-like is required for nonskeletogenic mesoderm specification in the sea urchin embryo., Yamazaki A., Dev Biol. February 15, 2008; 314 (2): 433-42.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 ???pagination.result.next???