Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (92) Expression Attributions Wiki
ECB-ANAT-42

Papers associated with animal hemisphere

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2

Sort Newest To Oldest Sort Oldest To Newest

Micromere descendants at the blastula stage are involved in normal archenteron formation in sea urchin embryos., Ishizuka Y., Dev Genes Evol. February 1, 2001; 211 (2): 83-8.


Transient activation of the micro1 homeobox gene family in the sea urchin ( Hemicentrotus pulcherrimus) micromere., Kitamura K., Dev Genes Evol. February 1, 2002; 212 (1): 1-10.


Patterning the sea urchin embryo: gene regulatory networks, signaling pathways, and cellular interactions., Angerer LM., Curr Top Dev Biol. January 1, 2003; 53 159-98.


Primary mesenchyme cell patterning during the early stages following ingression., Peterson RE., Dev Biol. February 1, 2003; 254 (1): 68-78.


Nuclear envelope breakdown in starfish oocytes proceeds by partial NPC disassembly followed by a rapidly spreading fenestration of nuclear membranes., Lénárt P., J Cell Biol. March 31, 2003; 160 (7): 1055-68.                


Coquillette, a sea urchin T-box gene of the Tbx2 subfamily, is expressed asymmetrically along the oral-aboral axis of the embryo and is involved in skeletogenesis., Croce J., Mech Dev. May 1, 2003; 120 (5): 561-72.


The M-phase-promoting factor modulates the sensitivity of the Ca2+ stores to inositol 1,4,5-trisphosphate via the actin cytoskeleton., Lim D., J Biol Chem. October 24, 2003; 278 (43): 42505-14.


Structure, regulation, and function of micro1 in the sea urchin Hemicentrotus pulcherrimus., Nishimura Y., Dev Genes Evol. November 1, 2004; 214 (11): 525-36.


SoxB1 downregulation in vegetal lineages of sea urchin embryos is achieved by both transcriptional repression and selective protein turnover., Angerer LM., Development. March 1, 2005; 132 (5): 999-1008.


Developmental potential of small micromeres in sea urchin embryos., Kurihara H., Zoolog Sci. August 1, 2005; 22 (8): 845-52.


The micro1 gene is necessary and sufficient for micromere differentiation and mid/hindgut-inducing activity in the sea urchin embryo., Yamazaki A., Dev Genes Evol. September 1, 2005; 215 (9): 450-59.


Subequatorial cytoplasm plays an important role in ectoderm patterning in the sea urchin embryo., Kominami T., Dev Growth Differ. February 1, 2006; 48 (2): 101-15.


Gene expression patterns in a novel animal appendage: the sea urchin pluteus arm., Love AC., Evol Dev. January 1, 2007; 9 (1): 51-68.


Specification process of animal plate in the sea urchin embryo., Sasaki H., Dev Growth Differ. September 1, 2008; 50 (7): 595-606.


Gene regulatory network interactions in sea urchin endomesoderm induction., Sethi AJ., PLoS Biol. February 3, 2009; 7 (2): e1000029.                        


Evolutionary modification of specification for the endomesoderm in the direct developing echinoid Peronella japonica: loss of the endomesoderm-inducing signal originating from micromeres., Iijima M., Dev Genes Evol. May 1, 2009; 219 (5): 235-47.


Action at a distance during cytokinesis., von Dassow G., J Cell Biol. December 14, 2009; 187 (6): 831-45.                


Distinct embryotoxic effects of lithium appeared in a new assessment model of the sea urchin: the whole embryo assay and the blastomere culture assay., Kiyomoto M., Ecotoxicology. March 1, 2010; 19 (3): 563-70.


Embryonic, larval, and juvenile development of the sea biscuit Clypeaster subdepressus (Echinodermata: Clypeasteroida)., Vellutini BC., PLoS One. March 22, 2010; 5 (3): e9654.                                


Ancestral regulatory circuits governing ectoderm patterning downstream of Nodal and BMP2/4 revealed by gene regulatory network analysis in an echinoderm., Saudemont A., PLoS Genet. December 23, 2010; 6 (12): e1001259.                      


The echinoid mitotic gradient: effect of cell size on the micromere cleavage cycle., Duncan RE., Mol Reprod Dev. January 1, 2011; 78 (10-11): 868-78.


Atypical protein kinase C controls sea urchin ciliogenesis., Prulière G., Mol Biol Cell. June 15, 2011; 22 (12): 2042-53.                


Reciprocal signaling between the ectoderm and a mesendodermal left-right organizer directs left-right determination in the sea urchin embryo., Bessodes N., PLoS Genet. January 1, 2012; 8 (12): e1003121.                      


Beyond BLASTing: tertiary and quaternary structure analysis helps identify major vault proteins., Daly TK., Genome Biol Evol. January 1, 2013; 5 (1): 217-32.              


Integration of canonical and noncanonical Wnt signaling pathways patterns the neuroectoderm along the anterior-posterior axis of sea urchin embryos., Range RC., PLoS Biol. January 1, 2013; 11 (1): e1001467.              


Characterization and Endocytic Internalization of Epith-2 Cell Surface Glycoprotein during the Epithelial-to-Mesenchymal Transition in Sea Urchin Embryos., Wakayama N., Front Endocrinol (Lausanne). January 1, 2013; 4 112.              


The tension at the top of the animal pole decreases during meiotic cell division., Satoh SK., PLoS One. January 1, 2013; 8 (11): e79389.                


Towards 3D in silico modeling of the sea urchin embryonic development., Rizzi B., J Chem Biol. September 13, 2013; 7 (1): 17-28.      


Nuclearization of β-catenin in ectodermal precursors confers organizer-like ability to induce endomesoderm and pattern a pluteus larva., Byrum CA., Evodevo. November 4, 2013; 4 (1): 31.        


Mesomere-derived glutamate decarboxylase-expressing blastocoelar mesenchyme cells of sea urchin larvae., Katow H., Biol Open. January 15, 2014; 3 (1): 94-102.              


Molecular conservation of metazoan gut formation: evidence from expression of endomesoderm genes in Capitella teleta (Annelida)., Boyle MJ., Evodevo. June 17, 2014; 5 39.          


Early asymmetric cues triggering the dorsal/ventral gene regulatory network of the sea urchin embryo., Cavalieri V., Elife. December 2, 2014; 3 e04664.                            


Mechanisms of the epithelial-to-mesenchymal transition in sea urchin embryos., Katow H., Tissue Barriers. January 1, 2015; 3 (4): e1059004.


Ca²⁺ influx-linked protein kinase C activity regulates the β-catenin localization, micromere induction signalling and the oral-aboral axis formation in early sea urchin embryos., Yazaki I., Zygote. June 1, 2015; 23 (3): 426-46.                


A workflow to process 3D+time microscopy images of developing organisms and reconstruct their cell lineage., Faure E., Nat Commun. February 25, 2016; 7 8674.            


Expression of GATA and POU transcription factors during the development of the planktotrophic trochophore of the polychaete serpulid Hydroides elegans., Wong KS., Evol Dev. July 1, 2016; 18 (4): 254-66.


An integrated modelling framework from cells to organism based on a cohort of digital embryos., Villoutreix P., Sci Rep. December 2, 2016; 6 37438.        


Diversification of spatiotemporal expression and copy number variation of the echinoid hbox12/pmar1/micro1 multigene family., Cavalieri V., PLoS One. March 28, 2017; 12 (3): e0174404.              


Experimental demonstration of a trophic cascade in the Galápagos rocky subtidal: Effects of consumer identity and behavior., Witman JD., PLoS One. April 17, 2017; 12 (4): e0175705.            


Lectins identify distinct populations of coelomocytes in Strongylocentrotus purpuratus., Liao WY., PLoS One. November 10, 2017; 12 (11): e0187987.            


MAPK and GSK3/ß-TRCP-mediated degradation of the maternal Ets domain transcriptional repressor Yan/Tel controls the spatial expression of nodal in the sea urchin embryo., Molina MD., PLoS Genet. September 17, 2018; 14 (9): e1007621.                


cis-Regulatory analysis for later phase of anterior neuroectoderm-specific foxQ2 expression in sea urchin embryos., Yamazaki A., Genesis. June 1, 2019; 57 (6): e23302.

???pagination.result.page??? ???pagination.result.prev??? 1 2