Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (2174) Expression Attributions Wiki
ECB-ANAT-10

Papers associated with embryo

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Structure of the Spec1 gene encoding a major calcium-binding protein in the embryonic ectoderm of the sea urchin, Strongylocentrotus purpuratus., Hardin SH., J Mol Biol. November 20, 1985; 186 (2): 243-55.


Water ordering during the cell cycle: nuclear magnetic resonance studies of the sea-urchin egg., Zimmerman S., J Cell Sci. November 1, 1985; 79 247-57.


The coincident time-space patterns of septate junction development in normal and exogastrulated sea urchin embryos., Spiegel E., Exp Cell Res. November 1, 1985; 161 (1): 75-87.


Simultaneous expression of early and late histone messenger RNAs in individual cells during development of the sea urchin embryo., Angerer L., Dev Biol. November 1, 1985; 112 (1): 157-66.


Sequential expression of germ-layer specific molecules in the sea urchin embryo., Wessel GM., Dev Biol. October 1, 1985; 111 (2): 451-63.


Distribution of histone H1 alpha among cells of the sea urchin embryo., Pehrson JR., Dev Biol. October 1, 1985; 111 (2): 530-3.


Role of fibronectin in primary mesenchyme cell migration in the sea urchin., Katow H., J Cell Biol. October 1, 1985; 101 (4): 1487-91.


The role of cap methylation in the translational activation of stored maternal histone mRNA in sea urchin embryos., Caldwell DC., Cell. September 1, 1985; 42 (2): 691-700.


Synthesis of sperm and late histone cDNAs of the sea urchin with a primer complementary to the conserved 3'' terminal palindrome: evidence for tissue-specific and more general histone gene variants., Busslinger M., Proc Natl Acad Sci U S A. September 1, 1985; 82 (17): 5676-80.


Patterns of cells and extracellular material of the sea urchin Lytechinus variegatus (Echinodermata; Echinoidea) embryo, from hatched blastula to late gastrula., Galileo DS., J Morphol. September 1, 1985; 185 (3): 387-402.


Potential uses of sea urchin embryos for identifying toxic chemicals: description of a bioassay incorporating cytologic, cytogenetic and embryologic endpoints., Hose JE., J Appl Toxicol. August 1, 1985; 5 (4): 245-54.


pH-induced hysteretic transitions of ovoperoxidase., Deits T., J Biol Chem. July 5, 1985; 260 (13): 7882-8.


Enhancement of spicule formation and calcium uptake by monoclonal antibodies to fibronectin-binding acid polysaccharide in cultured sea urchin embryonic cells., Iwata M., Cell Differ. July 1, 1985; 17 (1): 57-62.


Expression of alpha- and beta-tubulin genes during development of sea urchin embryos., Alexandraki D., Dev Biol. June 1, 1985; 109 (2): 436-51.


The small subunit of ribonucleotide reductase is encoded by one of the most abundant translationally regulated maternal RNAs in clam and sea urchin eggs., Standart NM., J Cell Biol. June 1, 1985; 100 (6): 1968-76.


A monoclonal antibody inhibits calcium accumulation and skeleton formation in cultured embryonic cells of the sea urchin., Carson DD., Cell. June 1, 1985; 41 (2): 639-48.


Primary differentiation and ectoderm-specific gene expression in the animalized sea urchin embryo., Nemer M., Dev Biol. June 1, 1985; 109 (2): 418-27.


Unequal cleavage and the differentiation of echinoid primary mesenchyme., Langelan RE., Dev Biol. June 1, 1985; 109 (2): 464-75.


In vitro fusion and separation of sea urchin primary mesenchyme cells., Karp GC., Exp Cell Res. June 1, 1985; 158 (2): 554-7.


Cortical granule exocytosis in sea urchin eggs is inhibited by drugs that alter intracellular calcium stores., Stapleton CL., J Exp Zool. May 1, 1985; 234 (2): 289-99.


RNA synthesis in male pronuclei of the sea urchin., Poccia D., Biochim Biophys Acta. April 19, 1985; 824 (4): 349-56.


Introduction of cloned DNA into sea urchin egg cytoplasm: replication and persistence during embryogenesis., McMahon AP., Dev Biol. April 1, 1985; 108 (2): 420-30.


Inositol 1,4,5-triphosphate microinjection triggers activation, but not meiotic maturation in amphibian and starfish oocytes., Picard A., FEBS Lett. March 25, 1985; 182 (2): 446-50.


Analysis of changes in a yolk glycoprotein complex in the developing sea urchin embryo., Kari BE., Dev Biol. March 1, 1985; 108 (1): 18-25.


Assembly of the sea urchin fertilization membrane: isolation of proteoliaisin, a calcium-dependent ovoperoxidase binding protein., Weidman PJ., J Cell Biol. March 1, 1985; 100 (3): 938-46.


The origin of pigment cells in embryos of the sea urchin Strongylocentrotus purpuratus., Gibson AW., Dev Biol. February 1, 1985; 107 (2): 414-9.


Three cell recognition changes accompany the ingression of sea urchin primary mesenchyme cells., Fink RD., Dev Biol. January 1, 1985; 107 (1): 66-74.


Bioactive marine metabolites, IV. Isolation and the amino acid composition of discodermin A, an antimicrobial peptide, from the marine sponge Discodermia kiiensis., Matsunaga S., J Nat Prod. January 1, 1985; 48 (2): 236-41.


Multiple polymorphic alpha- and beta-tubulin mRNAs are present in sea urchin eggs., Alexandraki D., Proc Natl Acad Sci U S A. January 1, 1985; 82 (1): 134-8.


Lineage-specific gene expression in the sea urchin embryo., Davidson EH., Cold Spring Harb Symp Quant Biol. January 1, 1985; 50 321-8.


Micromere-specific cell surface proteins of 16-cell stage sea urchin embryos., De Simone DW., Exp Cell Res. January 1, 1985; 156 (1): 7-14.


A quantitative study of growth cone filopodial extension., Argiro V., J Neurosci Res. January 1, 1985; 13 (1-2): 149-62.


Demonstration of the granular layer and the fate of the hyaline layer during the development of a sea urchin (Lytechinus variegatus)., Cameron RA., Cell Tissue Res. January 1, 1985; 239 (2): 455-8.


[Primary organization of nucleosome core particles in active and repressed nuclei]., Bavykin SG., Mol Biol (Mosk). January 1, 1985; 19 (1): 144-61.


Midbody sealing after cytokinesis in embryos of the sea urchin Arabacia punctulata., Sanger JM., Cell Tissue Res. January 1, 1985; 240 (2): 287-92.


Activation of transglutaminase during embryonic development., Cariello L., Biochemistry. December 18, 1984; 23 (26): 6843-50.


Embryonal histone H1 subtypes of the sea urchin Strongylocentrotus purpuratus: purification, characterization, and immunological comparison with H1 subtypes of the adult., Pehrson JR., Biochemistry. December 18, 1984; 23 (26): 6761-4.


Inhibition of replicative DNA synthesis in nuclei of Strongylocentrotus intermedium urchin embryo by 2'',3''-dideoxy-3''-aminonucleoside 5''-triphosphates., Kukhanova M., Biochim Biophys Acta. December 14, 1984; 783 (3): 221-6.


Molecular indices of cell lineage specification in sea urchin embryos., Angerer RC., Science. December 7, 1984; 226 (4679): 1153-60.


Allocation of mesendodermal cells during early embryogenesis in the starfish, Asterina pectinifera., Kominami T., J Embryol Exp Morphol. December 1, 1984; 84 177-90.


Purification and properties of ovoperoxidase, the enzyme responsible for hardening the fertilization membrane of the sea urchin egg., Deits T., J Biol Chem. November 10, 1984; 259 (21): 13525-33.


Developmental time, cell lineage, and environment regulate the newly synthesized proteins in sea urchin embryos., Pittman D., Dev Biol. November 1, 1984; 106 (1): 236-42.


Temporal sequence and spatial distribution of early events of fertilization in single sea urchin eggs., Eisen A., J Cell Biol. November 1, 1984; 99 (5): 1647-54.


Sperm surface proteins persist after fertilization., Gundersen GG., J Cell Biol. October 1, 1984; 99 (4 Pt 1): 1343-53.


Adhesive and migratory behavior of normal and sulfate-deficient sea urchin cells in vitro., Venkatasubramanian K., Exp Cell Res. October 1, 1984; 154 (2): 421-31.


Diffusible factors are responsible for differences in nuclease sensitivity among chromatins originating from different cell types., Chambers SA., Exp Cell Res. September 1, 1984; 154 (1): 213-23.


Rapid rate of tubulin dissociation from microtubules in the mitotic spindle in vivo measured by blocking polymerization with colchicine., Salmon ED., J Cell Biol. September 1, 1984; 99 (3): 1066-75.


Remodeling of sperm chromatin following fertilization: nucleosome repeat length and histone variant transitions in the absence of DNA synthesis., Poccia D., Dev Biol. August 1, 1984; 104 (2): 274-86.


Cyclic assembly-disassembly of cortical microtubules during maturation and early development of starfish oocytes., Schroeder TE., Dev Biol. June 1, 1984; 103 (2): 493-503.


Three sea urchin actin genes show different patterns of expression: muscle specific, embryo specific, and constitutive., Garcia R., Mol Cell Biol. May 1, 1984; 4 (5): 840-5.

???pagination.result.page??? ???pagination.result.prev??? 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 ???pagination.result.next???