Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (271) Expression Attributions Wiki
ECB-ANAT-257

Papers associated with archenteron

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Regulatory sequences driving expression of the sea urchin Otp homeobox gene in oral ectoderm cells., Cavalieri V., Gene Expr Patterns. January 1, 2007; 7 (1-2): 124-30.


Molecular paleoecology: using gene regulatory analysis to address the origins of complex life cycles in the late Precambrian., Dunn EF., Evol Dev. January 1, 2007; 9 (1): 10-24.


Evolutionary modification of mesenchyme cells in sand dollars in the transition from indirect to direct development., Yajima M., Evol Dev. January 1, 2007; 9 (3): 257-66.


A global view of gene expression in lithium and zinc treated sea urchin embryos: new components of gene regulatory networks., Poustka AJ., Genome Biol. January 1, 2007; 8 (5): R85.                


The Snail repressor is required for PMC ingression in the sea urchin embryo., Wu SY., Development. March 1, 2007; 134 (6): 1061-70.


Microplate assay for quantifying developmental morphologies: effects of exogenous hyalin on sea urchin gastrulation., Razinia Z., Zygote. May 1, 2007; 15 (2): 159-64.


Origins of radial symmetry identified in an echinoderm during adult development and the inferred axes of ancestral bilateral symmetry., Morris VB., Proc Biol Sci. June 22, 2007; 274 (1617): 1511-6.


Sequential logic model deciphers dynamic transcriptional control of gene expressions., Yeo ZX., PLoS One. August 22, 2007; 2 (8): e776.                  


Hemolytic C-type lectin CEL-III from sea cucumber expressed in transgenic mosquitoes impairs malaria parasite development., Yoshida S., PLoS Pathog. December 1, 2007; 3 (12): e192.          


Ingression of primary mesenchyme cells of the sea urchin embryo: a precisely timed epithelial mesenchymal transition., Wu SY., Birth Defects Res C Embryo Today. December 1, 2007; 81 (4): 241-52.


FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis [corrected] and regulate gastrulation during sea urchin development., Röttinger E., Development. January 1, 2008; 135 (2): 353-65.


Co-option and dissociation in larval origins and evolution: the sea urchin larval gut., Love AC., Evol Dev. January 1, 2008; 10 (1): 74-88.


Hyalin is a cell adhesion molecule involved in mediating archenteron-blastocoel roof attachment., Carroll EJ., Acta Histochem. January 1, 2008; 110 (4): 265-75.


Exogenous hyalin and sea urchin gastrulation, Part II: hyalin, an interspecies cell adhesion molecule., Alvarez M., Zygote. February 1, 2008; 16 (1): 73-8.


Expression patterns of three Par-related genes in sea urchin embryos., Shiomi K., Gene Expr Patterns. May 1, 2008; 8 (5): 323-30.


Morphology and gene analysis of hybrids between two congeneric sea stars with different modes of development., Wakabayashi K., Biol Bull. August 1, 2008; 215 (1): 89-97.


Seasonality of Lutzomyia fairtigi (Diptera: Psychodidae: Phlebotominae), a species endemic to Eastern Colombia., Molina JA., Mem Inst Oswaldo Cruz. August 1, 2008; 103 (5): 477-82.


Exogenous hyalin and sea urchin gastrulation. Part III: biological activity of hyalin isolated from Lytechinus pictus embryos., Contreras A., Zygote. November 1, 2008; 16 (4): 355-61.


Exogastrulation and interference with the expression of major yolk protein by estrogens administered to sea urchins., Kiyomoto M., Cell Biol Toxicol. December 1, 2008; 24 (6): 611-20.


Two ParaHox genes, SpLox and SpCdx, interact to partition the posterior endoderm in the formation of a functional gut., Cole AG., Development. February 1, 2009; 136 (4): 541-9.


Gene regulatory network interactions in sea urchin endomesoderm induction., Sethi AJ., PLoS Biol. February 3, 2009; 7 (2): e1000029.                        


Spatiotemporal distribution patterns of oligosaccharides during early embryogenesis in the starfish Patiria pectinifera., Doihara T., Dev Genes Evol. April 1, 2009; 219 (4): 199-206.


Development of the five primary podia from the coeloms of a sea star larva: homology with the echinoid echinoderms and other deuterostomes., Morris VB., Proc Biol Sci. April 7, 2009; 276 (1660): 1277-84.


Evolutionary modification of specification for the endomesoderm in the direct developing echinoid Peronella japonica: loss of the endomesoderm-inducing signal originating from micromeres., Iijima M., Dev Genes Evol. May 1, 2009; 219 (5): 235-47.


Fluorescent in situ hybridization reveals multiple expression domains for SpBrn1/2/4 and identifies a unique ectodermal cell type that co-expresses the ParaHox gene SpLox., Cole AG., Gene Expr Patterns. June 1, 2009; 9 (5): 324-8.


Evolutionary modification of T-brain (tbr) expression patterns in sand dollar., Minemura K., Gene Expr Patterns. October 1, 2009; 9 (7): 468-74.


Role of the nanos homolog during sea urchin development., Fujii T., Dev Dyn. October 1, 2009; 238 (10): 2511-21.


Suppressor of Hairless (Su(H)) is required for foregut development in the sea urchin embryo., Karasawa K., Zoolog Sci. October 1, 2009; 26 (10): 686-90.


Cdc42- and IRSp53-dependent contractile filopodia tether presumptive lens and retina to coordinate epithelial invagination., Chauhan BK., Development. November 1, 2009; 136 (21): 3657-67.


Patterning of the dorsal-ventral axis in echinoderms: insights into the evolution of the BMP-chordin signaling network., Lapraz F., PLoS Biol. November 1, 2009; 7 (11): e1000248.                        


Characterization and expression of a sea star otx ortholog (Protxβ1/2) in the larva of Patiriella regularis., Elia L., Gene Expr Patterns. January 1, 2010; 10 (7-8): 323-7.


Exogenous hyalin and sea urchin gastrulation. Part IV: a direct adhesion assay - progress in identifying hyalin''s active sites., Ghazarian H., Zygote. February 1, 2010; 18 (1): 17-26.


Spatiotemporal expression pattern of an encephalopsin orthologue of the sea urchin Hemicentrotus pulcherrimus during early development, and its potential role in larval vertical migration., Ooka S., Dev Growth Differ. February 1, 2010; 52 (2): 195-207.


Embryonic, larval, and juvenile development of the sea biscuit Clypeaster subdepressus (Echinodermata: Clypeasteroida)., Vellutini BC., PLoS One. March 22, 2010; 5 (3): e9654.                                


The endoderm gene regulatory network in sea urchin embryos up to mid-blastula stage., Peter IS., Dev Biol. April 15, 2010; 340 (2): 188-99.


Use of specific glycosidases to probe cellular interactions in the sea urchin embryo., Idoni B., Exp Cell Res. August 1, 2010; 316 (13): 2204-11.


Morphological maturation level of the esophagus is associated with the number of circumesophageal muscle fibers during archenteron formation in the starfish Patiria (Asterina) pectinifera., Miguchi Y., Biol Bull. August 1, 2010; 219 (1): 12-6.


Transcriptional increase and misexpression of 14-3-3 epsilon in sea urchin embryos exposed to UV-B., Russo R., Cell Stress Chaperones. November 1, 2010; 15 (6): 993-1001.


Uncoupling of complex regulatory patterning during evolution of larval development in echinoderms., Yankura KA., BMC Biol. November 30, 2010; 8 143.          


Developmental expression of COE across the Metazoa supports a conserved role in neuronal cell-type specification and mesodermal development., Jackson DJ., Dev Genes Evol. December 1, 2010; 220 (7-8): 221-34.                    


Gene expression analysis of Six3, Pax6, and Otx in the early development of the stalked crinoid Metacrinus rotundus., Omori A., Gene Expr Patterns. January 1, 2011; 11 (1-2): 48-56.


Oral-aboral patterning and gastrulation of sea urchin embryos depend on sulfated glycosaminoglycans., Bergeron KF., Mech Dev. January 1, 2011; 128 (1-2): 71-89.


Direct development of neurons within foregut endoderm of sea urchin embryos., Wei Z., Proc Natl Acad Sci U S A. May 31, 2011; 108 (22): 9143-7.


Atypical protein kinase C controls sea urchin ciliogenesis., Prulière G., Mol Biol Cell. June 15, 2011; 22 (12): 2042-53.                


Unusual coelom formation in the direct-type developing sand dollar Peronella japonica., Tsuchimoto J., Dev Dyn. November 1, 2011; 240 (11): 2432-9.


Embryonic, larval, and early juvenile development of the tropical sea urchin, Salmacis sphaeroides (Echinodermata: Echinoidea)., Rahman MA., ScientificWorldJournal. January 1, 2012; 2012 938482.    


Opposing nodal and BMP signals regulate left-right asymmetry in the sea urchin larva., Luo YJ., PLoS Biol. January 1, 2012; 10 (10): e1001402.            


Left-right asymmetry in the sea urchin embryo: BMP and the asymmetrical origins of the adult., Warner JF., PLoS Biol. January 1, 2012; 10 (10): e1001404.  


Reciprocal signaling between the ectoderm and a mesendodermal left-right organizer directs left-right determination in the sea urchin embryo., Bessodes N., PLoS Genet. January 1, 2012; 8 (12): e1003121.                      


Morphogenesis in sea urchin embryos: linking cellular events to gene regulatory network states., Lyons DC., Wiley Interdiscip Rev Dev Biol. January 1, 2012; 1 (2): 231-52.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 ???pagination.result.next???