Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (271) Expression Attributions Wiki
ECB-ANAT-257

Papers associated with archenteron

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Conservation of the WD-repeat, microtubule-binding protein, EMAP, in sea urchins, humans, and the nematode C. elegans., Suprenant KA., Dev Genes Evol. January 1, 2000; 210 (1): 2-10.


Characterization of a hemichordate fork head/HNF-3 gene expression., Taguchi S., Dev Genes Evol. January 1, 2000; 210 (1): 11-7.


Homeobox genes and sea urchin development., Di Bernardo M., Int J Dev Biol. January 1, 2000; 44 (6): 637-43.


Studies on the potential of micromeres to induce archenteron differentiation in embryos of a direct-developing sand dollar, Peronella japonica., Iijima M., Zygote. January 1, 2000; 8 Suppl 1 S80.


A starfish homolog of mouse T-brain-1 is expressed in the archenteron of Asterina pectinifera embryos: possible involvement of two T-box genes in starfish gastrulation., Shoguchi E., Dev Growth Differ. February 1, 2000; 42 (1): 61-8.


Expression of the otx gene in the ciliary bands during sea cucumber embryogenesis., Shoguchi E., Genesis. June 1, 2000; 27 (2): 58-63.


Cellular basis of gastrulation in the sand dollar Scaphechinus mirabilis., Kominami T., Biol Bull. December 1, 2000; 199 (3): 287-97.


Brachyury homolog (HpTa) is involved in the formation of archenteron and secondary mesenchyme cell differentiation in the sea urchin embryo., Mitsunaga-Nakatsubo K., Zoology (Jena). January 1, 2001; 104 (2): 99-102.


Regulating potential in development of a direct developing echinoid, Peronella japonica., Kitazawa C., Dev Growth Differ. February 1, 2001; 43 (1): 73-82.


Micromere descendants at the blastula stage are involved in normal archenteron formation in sea urchin embryos., Ishizuka Y., Dev Genes Evol. February 1, 2001; 211 (2): 83-8.


Cis-regulatory logic in the endo16 gene: switching from a specification to a differentiation mode of control., Yuh CH., Development. March 1, 2001; 128 (5): 617-29.


Ca(2+) in specification of vegetal cell fate in early sea urchin embryos., Yazaki I., J Exp Biol. March 1, 2001; 204 (Pt 5): 823-34.


Ectoderm exerts the driving force for gastrulation in the sand dollar Scaphechinus mirabilis., Takata H., Dev Growth Differ. June 1, 2001; 43 (3): 265-74.


Behavior of pigment cells in gastrula-stage embryos of Hemicentrotus pulcherrimus and Scaphechinus mirabilis., Kominami T., Dev Growth Differ. December 1, 2001; 43 (6): 699-707.


Identification and characterization of bone morphogenetic protein 2/4 gene from the starfish Archaster typicus., Shih LJ., Comp Biochem Physiol B Biochem Mol Biol. February 1, 2002; 131 (2): 143-51.


brachyury Target genes in the early sea urchin embryo isolated by differential macroarray screening., Rast JP., Dev Biol. June 1, 2002; 246 (1): 191-208.


Pattern formation in a pentameral animal: induction of early adult rudiment development in sea urchins., Minsuk SB., Dev Biol. July 15, 2002; 247 (2): 335-50.


The expression of SpRunt during sea urchin embryogenesis., Robertson AJ., Mech Dev. September 1, 2002; 117 (1-2): 327-30.


In situ screening for genes expressed preferentially in secondary mesenchyme cells of sea urchin embryos., Shoguchi E., Dev Genes Evol. October 1, 2002; 212 (9): 407-18.


Essential role of growth factor receptor-mediated signal transduction through the mitogen-activated protein kinase pathway in early embryogenesis of the echinoderm., Katow H., Dev Growth Differ. October 1, 2002; 44 (5): 437-55.


T-brain homologue (HpTb) is involved in the archenteron induction signals of micromere descendant cells in the sea urchin embryo., Fuchikami T., Development. November 1, 2002; 129 (22): 5205-16.


Behavior and differentiation process of pigment cells in a tropical sea urchin Echinometra mathaei., Takata H., Dev Growth Differ. January 1, 2003; 45 (5-6): 473-83.


Nuclear localization of beta-catenin in vegetal pole cells during early embryogenesis of the starfish Asterina pectinifera., Miyawaki K., Dev Growth Differ. April 1, 2003; 45 (2): 121-8.


Expression of a gene encoding a Gata transcription factor during embryogenesis of the starfish Asterina miniata., Hinman VF., Gene Expr Patterns. August 1, 2003; 3 (4): 419-22.


Expression of AmKrox, a starfish ortholog of a sea urchin transcription factor essential for endomesodermal specification., Hinman VF., Gene Expr Patterns. August 1, 2003; 3 (4): 423-6.


Expression and function of a starfish Otx ortholog, AmOtx: a conserved role for Otx proteins in endoderm development that predates divergence of the eleutherozoa., Hinman VF., Mech Dev. October 1, 2003; 120 (10): 1165-76.


Carbohydrate involvement in cellular interactions in sea urchin gastrulation., Khurrum M., Acta Histochem. January 1, 2004; 106 (2): 97-106.


The 5-HT receptor cell is a new member of secondary mesenchyme cell descendants and forms a major blastocoelar network in sea urchin larvae., Katow H., Mech Dev. April 1, 2004; 121 (4): 325-37.


Gastrulation in the sea urchin embryo: a model system for analyzing the morphogenesis of a monolayered epithelium., Kominami T., Dev Growth Differ. August 1, 2004; 46 (4): 309-26.


Behavior of pigment cells closely correlates the manner of gastrulation in sea urchin embryos., Takata H., Zoolog Sci. October 1, 2004; 21 (10): 1025-35.


Molecular heterotopy in the expression of Brachyury orthologs in order Clypeasteroida (irregular sea urchins) and order Echinoida (regular sea urchins)., Hibino T., Dev Genes Evol. November 1, 2004; 214 (11): 546-58.


Self-organization of vertebrate mesoderm based on simple boundary conditions., Green JB., Dev Dyn. November 1, 2004; 231 (3): 576-81.


Expression of Spgatae, the Strongylocentrotus purpuratus ortholog of vertebrate GATA4/5/6 factors., Lee PY., Gene Expr Patterns. December 1, 2004; 5 (2): 161-5.


A novel approach to study adhesion mechanisms by isolation of the interacting system., Coyle-Thompson C., Acta Histochem. January 1, 2005; 107 (4): 243-51.


The pre-nervous serotonergic system of developing sea urchin embryos and larvae: pharmacologic and immunocytochemical evidence., Buznikov GA., Neurochem Res. January 1, 2005; 30 (6-7): 825-37.


Fibrous component of the blastocoelic extracellular matrix shapes epithelia in concert with mesenchyme cells in starfish embryos., Kaneko H., Dev Dyn. April 1, 2005; 232 (4): 915-27.


Exclusive expression of hedgehog in small micromere descendants during early embryogenesis in the sea urchin, Hemicentrotus pulcherrimus., Hara Y., Gene Expr Patterns. April 1, 2005; 5 (4): 503-10.


Brn1/2/4, the predicted midgut regulator of the endo16 gene of the sea urchin embryo., Yuh CH., Dev Biol. May 15, 2005; 281 (2): 286-98.


A Fringe-modified Notch signal affects specification of mesoderm and endoderm in the sea urchin embryo., Peterson RE., Dev Biol. June 1, 2005; 282 (1): 126-37.


From larval bodies to adult body plans: patterning the development of the presumptive adult ectoderm in the sea urchin larva., Minsuk SB., Dev Genes Evol. August 1, 2005; 215 (8): 383-92.


The micro1 gene is necessary and sufficient for micromere differentiation and mid/hindgut-inducing activity in the sea urchin embryo., Yamazaki A., Dev Genes Evol. September 1, 2005; 215 (9): 450-59.


Frizzled5/8 is required in secondary mesenchyme cells to initiate archenteron invagination during sea urchin development., Croce J., Development. February 1, 2006; 133 (3): 547-57.


CBFbeta is a facultative Runx partner in the sea urchin embryo., Robertson AJ., BMC Biol. February 9, 2006; 4 4.            


RhoA regulates initiation of invagination, but not convergent extension, during sea urchin gastrulation., Beane WS., Dev Biol. April 1, 2006; 292 (1): 213-25.


Expression and function of blimp1/krox, an alternatively transcribed regulatory gene of the sea urchin endomesoderm network., Livi CB., Dev Biol. May 15, 2006; 293 (2): 513-25.


Hindgut specification and cell-adhesion functions of Sphox11/13b in the endoderm of the sea urchin embryo., Arenas-Mena C., Dev Growth Differ. September 1, 2006; 48 (7): 463-72.


Expression pattern of three putative RNA-binding proteins during early development of the sea urchin Paracentrotus lividus., Röttinger E., Gene Expr Patterns. October 1, 2006; 6 (8): 864-72.


A homologue of snail is expressed transiently in subsets of mesenchyme cells in the sea urchin embryo and is down-regulated in axis-deficient embryos., Hardin J., Dev Dyn. November 1, 2006; 235 (11): 3121-31.


Germ line determinants are not localized early in sea urchin development, but do accumulate in the small micromere lineage., Juliano CE., Dev Biol. December 1, 2006; 300 (1): 406-15.


Regulation of spblimp1/krox1a, an alternatively transcribed isoform expressed in midgut and hindgut of the sea urchin gastrula., Livi CB., Gene Expr Patterns. January 1, 2007; 7 (1-2): 1-7.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 ???pagination.result.next???