Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (141) Expression Attributions Wiki
ECB-ANAT-277

Papers associated with embryonic skeletogenic mesenchyme cell

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1 2 3 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Acid mucopolysaccharide metabolism, the cell surface, and primary mesenchyme cell activity in the sea urchin embryo., Karp GC., Dev Biol. November 1, 1974; 41 (1): 110-23.


Ultrastructural and time-lapse studies of primary mesenchyme cell behavior in normal and sulfate-deprived sea urchin embryos., Katow H., Exp Cell Res. December 1, 1981; 136 (2): 233-45.


Occurrence of fibronectin on the primary mesenchyme cell surface during migration in the sea urchin embryo., Katow H., Differentiation. January 1, 1982; 22 (2): 120-4.


The program of protein synthesis during the development of the micromere-primary mesenchyme cell line in the sea urchin embryo., Harkey MA., Dev Biol. November 1, 1983; 100 (1): 12-28.


Patterns of cells and extracellular material of the sea urchin Lytechinus variegatus (Echinodermata; Echinoidea) embryo, from hatched blastula to late gastrula., Galileo DS., J Morphol. September 1, 1985; 185 (3): 387-402.


Sequential expression of germ-layer specific molecules in the sea urchin embryo., Wessel GM., Dev Biol. October 1, 1985; 111 (2): 451-63.


Role of fibronectin in primary mesenchyme cell migration in the sea urchin., Katow H., J Cell Biol. October 1, 1985; 101 (4): 1487-91.


Behavior of sea urchin primary mesenchyme cells in artificial extracellular matrices., Katow H., Exp Cell Res. February 1, 1986; 162 (2): 401-10.


The regulation of primary mesenchyme cell migration in the sea urchin embryo: transplantations of cells and latex beads., Ettensohn CA., Dev Biol. October 1, 1986; 117 (2): 380-91.


Inhibition of cell migration in sea urchin embryos by beta-D-xyloside., Solursh M., Dev Biol. December 1, 1986; 118 (2): 325-32.


Antibodies to a fusion protein identify a cDNA clone encoding msp130, a primary mesenchyme-specific cell surface protein of the sea urchin embryo., Leaf DS., Dev Biol. May 1, 1987; 121 (1): 29-40.


Immunocytochemical evidence suggesting heterogeneity in the population of sea urchin egg cortical granules., Anstrom JA., Dev Biol. January 1, 1988; 125 (1): 1-7.


The origin of skeleton forming cells in the sea urchin embryo., Urben S., Rouxs Arch Dev Biol. January 1, 1988; 197 (8): 447-456.


Cell lineage conversion in the sea urchin embryo., Ettensohn CA., Dev Biol. February 1, 1988; 125 (2): 396-409.


Dependence of sea urchin primary mesenchyme cell migration on xyloside- and sulfate-sensitive cell surface-associated components., Lane MC., Dev Biol. May 1, 1988; 127 (1): 78-87.


Sea urchin primary mesenchyme cells: relation of cell polarity to the epithelial-mesenchymal transformation., Anstrom JA., Dev Biol. November 1, 1988; 130 (1): 57-66.


Sea urchin primary mesenchyme cells: ingression occurs independent of microtubules., Anstrom JA., Dev Biol. January 1, 1989; 131 (1): 269-75.


The accumulation and translation of a spicule matrix protein mRNA during sea urchin embryo development., Killian CE., Dev Biol. May 1, 1989; 133 (1): 148-56.


Electron microscopic studies on primary mesenchyme cell ingression and gastrulation in relation to vegetal pole cell behavior in sea urchin embryos., Amemiya S., Exp Cell Res. August 1, 1989; 183 (2): 453-62.


Cell interactions in the sea urchin embryo studied by fluorescence photoablation., Ettensohn CA., Science. June 1, 1990; 248 (4959): 1115-8.


The regulation of primary mesenchyme cell patterning., Ettensohn CA., Dev Biol. August 1, 1990; 140 (2): 261-71.


A fibronectin-related synthetic peptide, Pro-Ala-Ser-Ser, inhibits fibronectin binding to the cell surface, fibronectin-promoted cell migration in vitro, and cell migration in vivo., Katow H., Exp Cell Res. September 1, 1990; 190 (1): 17-24.


Immunohistochemical localization of a tenascin-like extracellular matrix protein in sea urchin embryos., Anstrom JA., Rouxs Arch Dev Biol. November 1, 1990; 199 (3): 169-173.


Primary mesenchyme cell migration requires a chondroitin sulfate/dermatan sulfate proteoglycan., Lane MC., Dev Biol. February 1, 1991; 143 (2): 389-97.


The structure and activities of echinonectin: a developmentally regulated cell adhesion glycoprotein with galactose-specific lectin activity., Alliegro MC., Glycobiology. June 1, 1991; 1 (3): 253-6.


Characterization and expression of a gene encoding a 30.6-kDa Strongylocentrotus purpuratus spicule matrix protein., George NC., Dev Biol. October 1, 1991; 147 (2): 334-42.


Primary mesenchyme cells of the sea urchin embryo require an autonomously produced, nonfibrillar collagen for spiculogenesis., Wessel GM., Dev Biol. November 1, 1991; 148 (1): 261-72.


Cell interactions and mesodermal cell fates in the sea urchin embryo., Ettensohn CA., Dev Suppl. January 1, 1992; 43-51.


Characterization of post-translational modifications common to three primary mesenchyme cell-specific glycoproteins involved in sea urchin embryonic skeleton formation., Kabakoff B., Dev Biol. April 1, 1992; 150 (2): 294-305.


Preservation and visualization of the sea urchin embryo blastocoelic extracellular matrix., Cherr GN., Microsc Res Tech. June 15, 1992; 22 (1): 11-22.


Mesodermal cell interactions in the sea urchin embryo: properties of skeletogenic secondary mesenchyme cells., Ettensohn CA., Development. April 1, 1993; 117 (4): 1275-85.


Size regulation and morphogenesis: a cellular analysis of skeletogenesis in the sea urchin embryo., Ettensohn CA., Development. September 1, 1993; 119 (1): 155-67.


Cell-cell interactions regulate skeleton formation in the sea urchin embryo., Armstrong N., Development. November 1, 1993; 119 (3): 833-40.


Protein-DNA interactions at putative regulatory regions of two coordinately expressed genes, msp130 and PM27, during skeletogenesis in sea urchin embryos., Raman V., Int J Dev Biol. December 1, 1993; 37 (4): 499-507.


Skeletal pattern is specified autonomously by the primary mesenchyme cells in sea urchin embryos., Armstrong N., Dev Biol. April 1, 1994; 162 (2): 329-38.


Primary mesenchyme cell migration in the sea urchin embryo: distribution of directional cues., Malinda KM., Dev Biol. August 1, 1994; 164 (2): 562-78.


Genomic organization of a gene encoding the spicule matrix protein SM30 in the sea urchin Strongylocentrotus purpuratus., Akasaka K., J Biol Chem. August 12, 1994; 269 (32): 20592-8.


Structure, expression, and extracellular targeting of PM27, a skeletal protein associated specifically with growth of the sea urchin larval spicule., Harkey MA., Dev Biol. April 1, 1995; 168 (2): 549-66.


Alteration of Ca2+ homeostasis of sea urchin embryos by retinoid CD 367, dual effect on egg cleavage and embryonic development., Espagnet S., J Biochem Toxicol. June 1, 1995; 10 (3): 161-9.


Pamlin, a primary mesenchyme cell adhesion protein, in the basal lamina of the sea urchin embryo., Katow H., Exp Cell Res. June 1, 1995; 218 (2): 469-78.


Dynamics of thin filopodia during sea urchin gastrulation., Miller J., Development. August 1, 1995; 121 (8): 2501-11.


Four-dimensional microscopic analysis of the filopodial behavior of primary mesenchyme cells during gastrulation in the sea urchin embryo., Malinda KM., Dev Biol. December 1, 1995; 172 (2): 552-66.


An extracellular matrix molecule that is selectively expressed during development is important for gastrulation in the sea urchin embryo., Berg LK., Development. February 1, 1996; 122 (2): 703-13.


Spatio-temporal expression of pamlin during early embryogenesis in sea urchin and importance of N-linked glycosylation for the glycoprotein function., Katow H., Rouxs Arch Dev Biol. May 1, 1996; 205 (7-8): 371-381.


Histological distribution of FR-1, a cyclic RGDS-peptide, binding sites during early embryogenesis, and isolation and initial characterization of FR-1 receptor in the sand dollar embryo., Katow H., Dev Growth Differ. April 1, 1997; 39 (2): 207-19.


Skeletal morphogenesis in the sea urchin embryo: regulation of primary mesenchyme gene expression and skeletal rod growth by ectoderm-derived cues., Guss KA., Development. May 1, 1997; 124 (10): 1899-908.


Comparative analysis of fibrillar and basement membrane collagen expression in embryos of the sea urchin, Strongylocentrotus purpuratus., Suzuki HR., Zoolog Sci. June 1, 1997; 14 (3): 449-54.


Multiple positive cis elements regulate the asymmetric expression of the SpHE gene along the sea urchin embryo animal-vegetal axis., Wei Z., Dev Biol. July 1, 1997; 187 (1): 71-8.


The dynamics and regulation of mesenchymal cell fusion in the sea urchin embryo., Hodor PG., Dev Biol. July 1, 1998; 199 (1): 111-24.


Differential expression of sea urchin Otx isoform (hpOtxE and HpOtxL) mRNAs during early development., Mitsunaga-Nakatsubo K., Int J Dev Biol. July 1, 1998; 42 (5): 645-51.

???pagination.result.page??? 1 2 3 ???pagination.result.next???