Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (2174) Expression Attributions Wiki
ECB-ANAT-10

Papers associated with embryo

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

A rapid lectin receptor binding assay: comparative evaluation of sea urchin embryo cell surface lectin receptors., Latham VH., Acta Histochem. January 1, 1995; 97 (1): 89-97.


A 62-kDa mitotic apparatus protein required for mitotic progression is sequestered to the interphase nucleus by associating with the chromosomes during anaphase., Ye X., Cell Motil Cytoskeleton. January 1, 1995; 30 (4): 310-23.


A protein of the sea urchin cortical granules is targeted to the fertilization envelope and contains an LDL-receptor-like motif., Wessel GM., Dev Biol. January 1, 1995; 167 (1): 388-97.


Morphology of incipient mesoderm formation in the rabbit embryo: a light- and retrospective electron-microscopic study., Viebahn C., Acta Anat (Basel). January 1, 1995; 154 (2): 99-110.


Cloning and characterization of a developmentally regulated sea urchin cDNA encoding glutamine synthetase., Fucci L., Gene. January 23, 1995; 152 (2): 205-8.


Cytoplasm calcium-binding proteins of germ cells and embryos of the sea urchin., Kreimer DI., Comp Biochem Physiol A Physiol. February 1, 1995; 110 (2): 95-105.


The cyclosome, a large complex containing cyclin-selective ubiquitin ligase activity, targets cyclins for destruction at the end of mitosis., Sudakin V., Mol Biol Cell. February 1, 1995; 6 (2): 185-97.


Developmental expression of D-galactoside-binding lectin in sea urchin (Anthocidaris crassispina) eggs., Ozeki Y., Exp Cell Res. February 1, 1995; 216 (2): 318-24.


Identification and partial characterization of yolk and cortical granule proteins in eggs and embryos of the starfish, Pisaster ochraceus., Reimer CL., Dev Biol. February 1, 1995; 167 (2): 439-57.


An orthodenticle-related protein from Strongylocentrotus purpuratus., Gan L., Dev Biol. February 1, 1995; 167 (2): 517-28.


Sea urchins--a new model for PAF research in embryology., Berdyshev EV., Comp Biochem Physiol B Biochem Mol Biol. March 1, 1995; 110 (3): 629-32.


Spatiotemporal relationships among early events of fertilization in sea urchin eggs revealed by multiview microscopy., Suzuki K., Biophys J. March 1, 1995; 68 (3): 739-48.


Effects of protein tyrosine kinase inhibitors on egg activation and fertilization-dependent protein tyrosine kinase activity., Moore KL., Dev Biol. March 1, 1995; 168 (1): 1-10.


DNA methyltransferase activity in the early stages of a sea urchin embryo. Evidence of differential control., Tosi L., FEBS Lett. March 13, 1995; 361 (1): 115-7.


Structure, expression, and extracellular targeting of PM27, a skeletal protein associated specifically with growth of the sea urchin larval spicule., Harkey MA., Dev Biol. April 1, 1995; 168 (2): 549-66.


Ciliogenesis in sea urchin embryos--a subroutine in the program of development., Stephens RE., Bioessays. April 1, 1995; 17 (4): 331-40.


SpZ12-1, a negative regulator required for spatial control of the territory-specific CyIIIa gene in the sea urchin embryo., Wang DG., Development. April 1, 1995; 121 (4): 1111-22.


Gastrulation in the sea urchin, Strongylocentrotus purpuratus, is disrupted by the small laminin peptides YIGSR and IKVAV., Hawkins RL., Cell Adhes Commun. May 1, 1995; 3 (2): 163-77.


Autonomous and non-autonomous differentiation of ectoderm in different sea urchin species., Wikramanayake AH., Development. May 1, 1995; 121 (5): 1497-505.


Alteration of Ca2+ homeostasis of sea urchin embryos by retinoid CD 367, dual effect on egg cleavage and embryonic development., Espagnet S., J Biochem Toxicol. June 1, 1995; 10 (3): 161-9.


Alpha-tubulin marker gene of neural territory of sea urchin embryos detected by whole-mount in situ hybridization., Gianguzza F., Int J Dev Biol. June 1, 1995; 39 (3): 477-83.


Maternal and embryonic provenance of a sea urchin embryo transcription factor, SpZ12-1., Wang DG., Mol Mar Biol Biotechnol. June 1, 1995; 4 (2): 148-53.


SpGCF1, a sea urchin embryo DNA-binding protein, exists as five nested variants encoded by a single mRNA., Zeller RW., Dev Biol. June 1, 1995; 169 (2): 713-27.


The in vivo rate of glucose-6-phosphate dehydrogenase activity in sea urchin eggs determined with a photolabile caged substrate., Swezey RR., Dev Biol. June 1, 1995; 169 (2): 733-44.


Sea urchin ovoperoxidase: solubilization and isolation from the fertilization envelope, some structural and functional properties, and degradation by hatching enzyme., Nomura K., Arch Biochem Biophys. June 1, 1995; 319 (2): 525-34.


Pamlin, a primary mesenchyme cell adhesion protein, in the basal lamina of the sea urchin embryo., Katow H., Exp Cell Res. June 1, 1995; 218 (2): 469-78.


Changes in Larval Morphology in the Evolution of Benthic Development by Patiriella exigua (Asteroidea: Asterinidae), a Comparison with the Larvae of Patiriella Species with Planktonic Development., Byrne M., Biol Bull. June 1, 1995; 188 (3): 293-305.


Active cyclin B-cdc2 kinase does not inhibit DNA replication and cannot drive prematurely fertilized sea urchin eggs into mitosis., Genevière-Garrigues AM., J Cell Sci. July 1, 1995; 108 ( Pt 7) 2693-703.


Evolution of the fibropellin gene family and patterns of fibropellin gene expression in sea urchin phylogeny., Bisgrove BW., J Mol Evol. July 1, 1995; 41 (1): 34-45.


Cis-regulatory control of the SM50 gene, an early marker of skeletogenic lineage specification in the sea urchin embryo., Makabe KW., Development. July 1, 1995; 121 (7): 1957-70.


How do sea urchins invaginate? Using biomechanics to distinguish between mechanisms of primary invagination., Davidson LA., Development. July 1, 1995; 121 (7): 2005-18.


Identification of a component of the sea urchin hyaline layer, HLC-175, which undergoes proteolytic processing during development., Robinson JJ., Int J Biochem Cell Biol. July 1, 1995; 27 (7): 675-81.


Structure of the extraembryonic matrices around the benthic embryos of Patiriella exigua (Asteroidea) and their roles in benthic development: Comparison with the planktonic embryos of Patiriella regularis., Cerra A., J Morphol. July 1, 1995; 225 (1): 77-89.


Effects of retinoic acid and dimethylsulfoxide on the morphogenesis of the sea urchin embryo., Sciarrino S., Cell Biol Int. August 1, 1995; 19 (8): 675-80.


Time-lapse confocal imaging of calcium dynamics in starfish embryos., Stricker SA., Dev Biol. August 1, 1995; 170 (2): 496-518.


Proteases stimulate fertilization-like responses in starfish eggs., Carroll DJ., Dev Biol. August 1, 1995; 170 (2): 690-700.


Dynamics of thin filopodia during sea urchin gastrulation., Miller J., Development. August 1, 1995; 121 (8): 2501-11.


Activation-dependent and activation-independent localisation of calmodulin to the mitotic apparatus during the first cell cycle of the Lytechinus pictus embryo., Wilding M., Zygote. August 1, 1995; 3 (3): 219-24.


Selective inhibition of gastrulation in the starfish embryo by albuside B, an inosine analogue., Shimizu T., FEBS Lett. August 7, 1995; 369 (2-3): 221-4.


Homeobox-containing gene transiently expressed in a spatially restricted pattern in the early sea urchin embryo., Di Bernardo M., Proc Natl Acad Sci U S A. August 29, 1995; 92 (18): 8180-4.


A sea urchin homologue of the chordate Brachyury (T) gene is expressed in the secondary mesenchyme founder cells., Harada Y., Development. September 1, 1995; 121 (9): 2747-54.


Immunolocalization of the heterotrimeric kinesin-related protein KRP(85/95) in the mitotic apparatus of sea urchin embryos., Henson JH., Dev Biol. September 1, 1995; 171 (1): 182-94.


Characterization of the SpHE promoter that is spatially regulated along the animal-vegetal axis of the sea urchin embryo., Wei Z., Dev Biol. September 1, 1995; 171 (1): 195-211.


Role for platelet-derived growth factor-like and epidermal growth factor-like signaling pathways in gastrulation and spiculogenesis in the Lytechinus sea urchin embryo., Ramachandran RK., Dev Dyn. September 1, 1995; 204 (1): 77-88.


Promoter binding factors regulating cyclin B transcription in the sea urchin embryo., Thatcher JD., DNA Cell Biol. October 1, 1995; 14 (10): 869-81.


Micromeres are required for normal vegetal plate specification in sea urchin embryos., Ransick A., Development. October 1, 1995; 121 (10): 3215-22.


Rapid identification of lectin receptors and their possible function in sea urchin cell systems., Latham VH., Acta Histochem. October 1, 1995; 97 (4): 373-82.


Such hydrophobic peptides as dansylated mastoparan can elevate the fertilization membrane of sea urchin eggs., Saito K., Biochem Biophys Res Commun. October 24, 1995; 215 (3): 828-34.


Invasion of selectively permeable sea urchin embryo basement membranes by metastatic tumor cells, but not by their normal counterparts., Livant DL., Cancer Res. November 1, 1995; 55 (21): 5085-93.


Characterization and localized expression of the laminin binding protein/p40 (LBP/p40) gene during sea urchin development., Hung M., Exp Cell Res. November 1, 1995; 221 (1): 221-30.

???pagination.result.page??? ???pagination.result.prev??? 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 ???pagination.result.next???