Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (2174) Expression Attributions Wiki
ECB-ANAT-10

Papers associated with embryo

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Purification and characterization of a 32-kDa protein that localizes to the sea urchin extraembryonic matrix, the hyaline layer., Robinson JJ., Biochem Cell Biol. August 1, 1992; 70 (8): 623-8.


Assembly of the Hatching Envelope Around the Eggs of Trachypenaeus similis and Sicyonia ingentis in a Low Sodium Environment., Lynn JW., Biol Bull. August 1, 1992; 183 (1): 84-93.


Cyclin A potentiates maturation-promoting factor activation in the early Xenopus embryo via inhibition of the tyrosine kinase that phosphorylates cdc2., Devault A., J Cell Biol. September 1, 1992; 118 (5): 1109-20.


Isolation and characterization of cDNA encoding a spicule matrix protein in Hemicentrotus pulcherrimus micromeres., Katoh-Fukui Y., Int J Dev Biol. September 1, 1992; 36 (3): 353-61.


Mitotic apparatus formation and cleavage induction by micromanipulation of the nucleus and centrosome: the centrosome forms a spindle together with only the chromosomes at a short distance., Saiki T., Exp Cell Res. October 1, 1992; 202 (2): 450-7.


Histone H2A.F/Z mRNA is stored in the egg cytoplasm and basally regulated in the sea urchin embryo., McIsaac R., Dev Biol. October 1, 1992; 153 (2): 402-6.


Hyalin, a sea urchin extraembryonic matrix protein: relationship between calcium binding and hyalin gelation., Robinson JJ., Arch Biochem Biophys. October 1, 1992; 298 (1): 129-34.


The insertion of mesenchyme cells into the ectoderm during differentiation in Sea urchin embryos., Spiegel E., Rouxs Arch Dev Biol. October 1, 1992; 201 (6): 383-388.


Cell Movements during Gastrulation of Starfish Larvae., Kuraishi R., Biol Bull. October 1, 1992; 183 (2): 258-268.


Commitment along the dorsoventral axis of the sea urchin embryo is altered in response to NiCl2., Hardin J., Development. November 1, 1992; 116 (3): 671-85.


A 62-kD protein required for mitotic progression is associated with the mitotic apparatus during M-phase and with the nucleus during interphase., Johnston JA., J Cell Biol. November 1, 1992; 119 (4): 843-54.


Microfilaments, cell shape changes, and the formation of primary mesenchyme in sea urchin embryos., Anstrom JA., J Exp Zool. December 1, 1992; 264 (3): 312-22.


Analysis of competence in cultured sea urchin micromeres., Page L., Exp Cell Res. December 1, 1992; 203 (2): 305-11.


Analysis of the DNA binding proteins interacting with specific upstream sequences of the S. purpuratus CyI actin gene., Ganster R., Mol Reprod Dev. December 1, 1992; 33 (4): 392-406.


[The prediction of the superactivity of embryo-toxic benzine and indole derivatives by the discriminant analysis method]., Ordukhanian AA., Izv Akad Nauk Ser Biol. January 1, 1993; (4): 617-9.


Transient, localized accumulation of alpha-spectrin during sea urchin morphogenesis., Wessel GM., Dev Biol. January 1, 1993; 155 (1): 161-71.


Major temporal and spatial patterns of gene expression during differentiation of the sea urchin embryo., Kingsley PD., Dev Biol. January 1, 1993; 155 (1): 216-34.


Combinatorial regulation by promoter and intron 1 regions of the metallothionein SpMTA gene in the sea urchin embryo., Bai G., Mol Cell Biol. February 1, 1993; 13 (2): 993-1001.


Temporally different poly(adenosine diphosphate-ribosylation) signals are required for DNA replication and cell division in early embryos of sea urchins., Imschenetzky M., J Cell Biochem. February 1, 1993; 51 (2): 198-205.


Accumulation of multiacetylated forms of histones by trichostatin A and its developmental consequences in early starfish embryos., Ikegami S., Rouxs Arch Dev Biol. February 1, 1993; 202 (3): 144-151.


A complete second gut induced by transplanted micromeres in the sea urchin embryo., Ransick A., Science. February 19, 1993; 259 (5098): 1134-8.


Characterization of a high-affinity binding site for a DNA-binding protein from sea urchin embryo mitochondria., Qureshi SA., Nucleic Acids Res. February 25, 1993; 21 (4): 811-6.


Degradation of an extracellular matrix: sea urchin hatching enzyme removes cortical granule-derived proteins from the fertilization envelope., Mozingo NM., J Cell Sci. March 1, 1993; 104 ( Pt 3) 929-38.


A role for regulated secretion of apical extracellular matrix during epithelial invagination in the sea urchin., Lane MC., Development. March 1, 1993; 117 (3): 1049-60.


Upstream elements involved in the embryonic regulation of the sea urchin CyIIIb actin gene: temporal and spatial specific interactions at a single cis-acting element., Niemeyer CC., Dev Biol. March 1, 1993; 156 (1): 293-302.


Developmental potential of muscle cell progenitors and the myogenic factor SUM-1 in the sea urchin embryo., Venuti JM., Mech Dev. April 1, 1993; 41 (1): 3-14.


Mesodermal cell interactions in the sea urchin embryo: properties of skeletogenic secondary mesenchyme cells., Ettensohn CA., Development. April 1, 1993; 117 (4): 1275-85.


Studies on the cellular pathway involved in assembly of the embryonic sea urchin spicule., Hwang SP., Exp Cell Res. April 1, 1993; 205 (2): 383-7.


Differential expression and function of cadherin-like proteins in the sea urchin embryo., Ghersi G., Mech Dev. April 1, 1993; 41 (1): 47-55.


The potency of the first two cleavage cells in echinoderm development: the experiments of Driesch revisited., Khaner O., Rouxs Arch Dev Biol. April 1, 1993; 202 (4): 193-197.


Improved preservation of ultrastructure in difficult-to-fix organisms by high pressure freezing and freeze substitution: I. Drosophila melanogaster and Strongylocentrotus purpuratus embryos., McDonald K., Microsc Res Tech. April 15, 1993; 24 (6): 465-73.


Stereo-specific inhibition of sea urchin envelysin (hatching enzyme) by a synthetic autoinhibitor peptide with a cysteine-switch consensus sequence., Nomura K., FEBS Lett. April 19, 1993; 321 (1): 84-8.


A positive cis-regulatory element with a bicoid target site lies within the sea urchin Spec2a enhancer., Gan L., Dev Biol. May 1, 1993; 157 (1): 119-32.


Expression of type IV collagen-degrading activity during early embryonal development in the sea urchin and the arresting effects of collagen synthesis inhibitors on embryogenesis., Karakiulakis G., J Cell Biochem. May 1, 1993; 52 (1): 92-106.


The SpEGF III gene encodes a member of the fibropellins: EGF repeat-containing proteins that form the apical lamina of the sea urchin embryo., Bisgrove BW., Dev Biol. June 1, 1993; 157 (2): 526-38.


Two distinct, sequence-specific DNA-binding proteins interact independently with the major replication pause region of sea urchin mtDNA., Qureshi SA., Nucleic Acids Res. June 25, 1993; 21 (12): 2801-8.


Later embryogenesis: regulatory circuitry in morphogenetic fields., Davidson EH., Development. July 1, 1993; 118 (3): 665-90.


Post-translational chemical modifications of proteins--III. Current developments in analytical procedures of identification and quantitation of post-translational chemically modified amino acid(s) and its derivatives., Han KK., Int J Biochem. July 1, 1993; 25 (7): 957-70.


The microvilli and hyaline layer of embryonic asteroid epithelial collar cells: a sensory structure to determine the position of locomotory cilia?, Crawford BJ., Anat Rec. August 1, 1993; 236 (4): 697-709.


Intracellular pH regulation in the early embryo., Baltz JM., Bioessays. August 1, 1993; 15 (8): 523-30.


Whole mount in situ hybridization shows Endo 16 to be a marker for the vegetal plate territory in sea urchin embryos., Ransick A., Mech Dev. August 1, 1993; 42 (3): 117-24.


SpOct, a gene encoding the major octamer-binding protein in sea urchin embryos: expression profile, evolutionary relationships, and DNA binding of expressed protein., Char BR., Dev Biol. August 1, 1993; 158 (2): 350-63.


Matrix metalloproteases of the developing sea urchin embryo., Quigley JP., Differentiation. August 1, 1993; 54 (1): 19-23.


Highly Derived Coelomic and Water-Vascular Morphogenesis in a Starfish with Pelagic Direct Development., Janies DA., Biol Bull. August 1, 1993; 185 (1): 56-76.


Possibility of membrane reception of neurotransmitter in sea urchin early embryos., Shmukler YB., Comp Biochem Physiol C Comp Pharmacol Toxicol. September 1, 1993; 106 (1): 269-73.


Size regulation and morphogenesis: a cellular analysis of skeletogenesis in the sea urchin embryo., Ettensohn CA., Development. September 1, 1993; 119 (1): 155-67.


Sea urchin egg 100-kDa dynamin-related protein: identification of and localization to intracellular vesicles., Faire K., Dev Biol. October 1, 1993; 159 (2): 581-94.


Ultrastructural Histochemistry of Marthasterias glacialis (Echinodermata, Asteroidea) Gametes Before and After Fertilization., Sousa M., Biol Bull. October 1, 1993; 185 (2): 225-231.


Cell-cell interactions regulate skeleton formation in the sea urchin embryo., Armstrong N., Development. November 1, 1993; 119 (3): 833-40.


A clonal analysis of secondary mesenchyme cell fates in the sea urchin embryo., Ruffins SW., Dev Biol. November 1, 1993; 160 (1): 285-8.

???pagination.result.page??? ???pagination.result.prev??? 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 ???pagination.result.next???