Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (2174) Expression Attributions Wiki
ECB-ANAT-10

Papers associated with embryo

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Analysis of rab10 localization in sea urchin embryonic cells by three-dimensional reconstruction., Leaf DS., Exp Cell Res. August 25, 1998; 243 (1): 39-49.


Specification of cell fate in the sea urchin embryo: summary and some proposed mechanisms., Davidson EH., Development. September 1, 1998; 125 (17): 3269-90.


MAP kinase activity increases during mitosis in early sea urchin embryos., Philipova R., J Cell Sci. September 1, 1998; 111 ( Pt 17) 2497-505.


Evidence for MAP kinase activation during mitotic division., Chiri S., J Cell Sci. September 1, 1998; 111 ( Pt 17) 2519-27.


Chloral hydrate alters the organization of the ciliary basal apparatus and cell organelles in sea urchin embryos., Chakrabarti A., Cell Tissue Res. September 1, 1998; 293 (3): 453-62.


Disruption of primary mesenchyme cell patterning by misregulated ectodermal expression of SpMsx in sea urchin embryos., Tan H., Dev Biol. September 15, 1998; 201 (2): 230-46.


A protein of the basal lamina of the sea urchin embryo., Tesoro V., Dev Growth Differ. October 1, 1998; 40 (5): 527-35.


Unequal divisions at the third cleavage increase the number of primary mesenchyme cells in sea urchin embryos., Kominami T., Dev Growth Differ. October 1, 1998; 40 (5): 545-53.


Coelomic pouch formation in reconstructing embryos of the starfish Asterina pectinifera., Tamura M., Dev Growth Differ. October 1, 1998; 40 (5): 567-75.


A Little Shell to Live In: Evidence That the Fertilization Envelope Can Prevent Mechanically Induced Damage of the Developing Sea Urchin Embryo., Miyake K., Biol Bull. October 1, 1998; 195 (2): 214-215.


The betaL integrin subunit is necessary for gastrulation in sea urchin embryos., Marsden M., Dev Biol. November 1, 1998; 203 (1): 134-48.


Biological effects of a neurotoxic pesticide at low concentrations on sea urchin early development. A terathogenic assay., Morale A., Chemosphere. December 1, 1998; 37 (14-15): 3001-10.


Bottle cells are required for the initiation of primary invagination in the sea urchin embryo., Kimberly EL., Dev Biol. December 1, 1998; 204 (1): 235-50.


The TATA binding protein in the sea urchin embryo is maternally derived., Edelmann L., Dev Biol. December 1, 1998; 204 (1): 293-304.


The 350-kDa sea urchin egg receptor for sperm is localized in the vitelline layer., Hirohashi N., Dev Biol. December 1, 1998; 204 (1): 305-15.


Histone deacetylase mRNA temporally and spatially regulated in its expression in sea urchin embryos., Nemer M., Dev Growth Differ. December 1, 1998; 40 (6): 583-90.


Interference with gene regulation in living sea urchin embryos: transcription factor knock out (TKO), a genetically controlled vector for blockade of specific transcription factors., Bogarad LD., Proc Natl Acad Sci U S A. December 8, 1998; 95 (25): 14827-32.


Calcium-protein interactions in the extracellular environment: calcium binding, activation, and immunolocalization of a collagenase/gelatinase activity expressed in the sea urchin embryo., Mayne J., J Cell Biochem. December 15, 1998; 71 (4): 546-58.


Nuclear beta-catenin is required to specify vegetal cell fates in the sea urchin embryo., Logan CY., Development. January 1, 1999; 126 (2): 345-57.


HpEts, an ets-related transcription factor implicated in primary mesenchyme cell differentiation in the sea urchin embryo., Kurokawa D., Mech Dev. January 1, 1999; 80 (1): 41-52.


Larval homologies and radical evolutionary changes in early development., Raff RA., Novartis Found Symp. January 1, 1999; 222 110-21; discussion 121-4.


Identification of a new sea urchin ets protein, SpEts4, by yeast one-hybrid screening with the hatching enzyme promoter., Wei Z., Mol Cell Biol. February 1, 1999; 19 (2): 1271-8.


Regulation of BMP signaling by the BMP1/TLD-related metalloprotease, SpAN., Wardle FC., Dev Biol. February 1, 1999; 206 (1): 63-72.


Expression of the cell cycle in sperm of Arabidopsis: implications for understanding patterns of gametogenesis and fertilization in plants and other eukaryotes., Friedman WE., Development. February 1, 1999; 126 (5): 1065-75.


Expression of a src-type protein tyrosine kinase gene, AcSrc1, in the sea urchin embryo., Onodera H., Dev Growth Differ. February 1, 1999; 41 (1): 19-28.


Functional organization of DNA elements regulating SM30alpha, a spicule matrix gene of sea urchin embryos., Yamasu K., Dev Growth Differ. February 1, 1999; 41 (1): 81-91.


alphaSU2, an epithelial integrin that binds laminin in the sea urchin embryo., Hertzler PL., Dev Biol. March 1, 1999; 207 (1): 1-13.


Cellular control over spicule formation in sea urchin embryos: A structural approach., Beniash E., J Struct Biol. March 1, 1999; 125 (1): 50-62.


Developmental characterization of the gene for laminin alpha-chain in sea urchin embryos., Benson S., Mech Dev. March 1, 1999; 81 (1-2): 37-49.


Expression pattern of Brachyury and Not in the sea urchin: comparative implications for the origins of mesoderm in the basal deuterostomes., Peterson KJ., Dev Biol. March 15, 1999; 207 (2): 419-31.


LvNotch signaling mediates secondary mesenchyme specification in the sea urchin embryo., Sherwood DR., Development. April 1, 1999; 126 (8): 1703-13.


Spatially regulated SpEts4 transcription factor activity along the sea urchin embryo animal-vegetal axis., Wei Z., Development. April 1, 1999; 126 (8): 1729-37.


Model peptide studies of sequence repeats derived from the intracrystalline biomineralization protein, SM50. I. GVGGR and GMGGQ repeats., Xu G., Biopolymers. April 1, 1999; 49 (4): 303-12.


Pattern of Brachyury gene expression in starfish embryos resembles that of hemichordate embryos but not of sea urchin embryos., Shoguchi E., Mech Dev. April 1, 1999; 82 (1-2): 185-9.


Spatially restricted expression of PlOtp, a Paracentrotus lividus orthopedia-related homeobox gene, is correlated with oral ectodermal patterning and skeletal morphogenesis in late-cleavage sea urchin embryos., Di Bernardo M., Development. May 1, 1999; 126 (10): 2171-9.


Role of phospholipase Cgamma at fertilization and during mitosis in sea urchin eggs and embryos., Shearer J., Development. May 1, 1999; 126 (10): 2273-84.


Cortical granule translocation during maturation of starfish oocytes requires cytoskeletal rearrangement triggered by InsP3-mediated Ca2+ release., Santella L., Exp Cell Res. May 1, 1999; 248 (2): 567-74.


Function and evolution of Otx proteins., Klein WH., Biochem Biophys Res Commun. May 10, 1999; 258 (2): 229-33.


Hbox1 and Hbox7 are involved in pattern formation in sea urchin embryos., Ishii M., Dev Growth Differ. June 1, 1999; 41 (3): 241-52.


Lim1 related homeobox gene (HpLim1) expressed in sea urchin embryos., Kawasaki T., Dev Growth Differ. June 1, 1999; 41 (3): 273-82.


SM37, a skeletogenic gene of the sea urchin embryo linked to the SM50 gene., Lee YH., Dev Growth Differ. June 1, 1999; 41 (3): 303-12.


How to grow a gut: ontogeny of the endoderm in the sea urchin embryo., Wessel GM., Bioessays. June 1, 1999; 21 (6): 459-71.


Regulative development of the sea urchin embryo: signalling cascades and morphogen gradients., Angerer LM., Semin Cell Dev Biol. June 1, 1999; 10 (3): 327-34.


Matrix and mineral in the sea urchin larval skeleton., Wilt FH., J Struct Biol. June 30, 1999; 126 (3): 216-26.


Apextrin, a novel extracellular protein associated with larval ectoderm evolution in Heliocidaris erythrogramma., Haag ES., Dev Biol. July 1, 1999; 211 (1): 77-87.


A putative role for carbohydrates in sea urchin gastrulation., Latham VH., Acta Histochem. July 1, 1999; 101 (3): 293-303.


The primary and higher order structures of sea urchin ovoperoxidase as determined by cDNA cloning and predicted by homology modeling., Nomura K., Arch Biochem Biophys. July 15, 1999; 367 (2): 173-84.


Expression of the sea urchin MyoD homologue, SUM1, is not restricted to the myogenic lineage during embryogenesis., Beach RL., Mech Dev. August 1, 1999; 86 (1-2): 209-12.


Cell movements in the sea urchin embryo., Ettensohn CA., Curr Opin Genet Dev. August 1, 1999; 9 (4): 461-5.


Absence of furrowing activity following regional cortical tension reduction in sand dollar blastomere and fertilized egg fragment surfaces., Rappaport R., Dev Growth Differ. August 1, 1999; 41 (4): 441-7.

???pagination.result.page??? ???pagination.result.prev??? 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 ???pagination.result.next???