Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (705) Expression Attributions Wiki
ECB-ANAT-169

Papers associated with germ layer

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Transplantation of Xenopus laevis Lens Ectoderm., Sive HL., CSH Protoc. June 1, 2007; 2007 pdb.prot4751.


Xenopus laevis Einstecks., Sive HL., CSH Protoc. June 1, 2007; 2007 pdb.prot4750.


Xenopus laevis Keller Explants., Sive HL., CSH Protoc. June 1, 2007; 2007 pdb.prot4749.


Xenopus laevis Animal Cap/Dorsal Mesoderm Conjugates., Sive HL., CSH Protoc. June 1, 2007; 2007 pdb.prot4748.


Xenopus laevis Animal Cap/Vegetal Endoderm Conjugates., Sive HL., CSH Protoc. June 1, 2007; 2007 pdb.prot4747.


Time and extent of ciliary response to particles in a non-filtering feeding mechanism., Strathmann RR., Biol Bull. April 1, 2007; 212 (2): 93-103.


The Snail repressor is required for PMC ingression in the sea urchin embryo., Wu SY., Development. March 1, 2007; 134 (6): 1061-70.


Sp-Smad2/3 mediates patterning of neurogenic ectoderm by nodal in the sea urchin embryo., Yaguchi S., Dev Biol. February 15, 2007; 302 (2): 494-503.


Serotonin stimulates [Ca2+]i elevation in ciliary ectodermal cells of echinoplutei through a serotonin receptor cell network in the blastocoel., Katow H., J Exp Biol. February 1, 2007; 210 (Pt 3): 403-12.


Regulatory sequences driving expression of the sea urchin Otp homeobox gene in oral ectoderm cells., Cavalieri V., Gene Expr Patterns. January 1, 2007; 7 (1-2): 124-30.


Gene expression patterns in a novel animal appendage: the sea urchin pluteus arm., Love AC., Evol Dev. January 1, 2007; 9 (1): 51-68.


Gene regulation: gene control network in development., Ben-Tabou de-Leon S., Annu Rev Biophys Biomol Struct. January 1, 2007; 36 191.


Developmental origin of the adult nervous system in a holothurian: an attempt to unravel the enigma of neurogenesis in echinoderms., Mashanov VS., Evol Dev. January 1, 2007; 9 (3): 244-56.


A global view of gene expression in lithium and zinc treated sea urchin embryos: new components of gene regulatory networks., Poustka AJ., Genome Biol. January 1, 2007; 8 (5): R85.                


Modeling development: spikes of the sea urchin., Kühn C., Genome Inform. January 1, 2007; 18 75-84.


Apical organs in echinoderm larvae: insights into larval evolution in the Ambulacraria., Byrne M., Evol Dev. January 1, 2007; 9 (5): 432-45.


Larval arm resorption proceeds concomitantly with programmed cell death during metamorphosis of the sea urchin Hemicentrotus pulcherrimus., Sato Y., Cell Tissue Res. December 1, 2006; 326 (3): 851-60.


Genetic organization and embryonic expression of the ParaHox genes in the sea urchin S. purpuratus: insights into the relationship between clustering and colinearity., Arnone MI., Dev Biol. December 1, 2006; 300 (1): 63-73.


Expression patterns of Hox genes in larvae of the sea lily Metacrinus rotundus., Hara Y., Dev Genes Evol. December 1, 2006; 216 (12): 797-809.


Genomics and expression profiles of the Hedgehog and Notch signaling pathways in sea urchin development., Walton KD., Dev Biol. December 1, 2006; 300 (1): 153-64.


RTK and TGF-beta signaling pathways genes in the sea urchin genome., Lapraz F., Dev Biol. December 1, 2006; 300 (1): 132-52.


Protein tyrosine and serine-threonine phosphatases in the sea urchin, Strongylocentrotus purpuratus: identification and potential functions., Byrum CA., Dev Biol. December 1, 2006; 300 (1): 194-218.


Phylogenetic correspondence of the body axes in bilaterians is revealed by the right-sided expression of Pitx genes in echinoderm larvae., Hibino T., Dev Growth Differ. December 1, 2006; 48 (9): 587-95.


Deciphering the underlying mechanism of specification and differentiation: the sea urchin gene regulatory network., Ben-Tabou de-Leon S., Sci STKE. November 14, 2006; 2006 (361): pe47.


The emergence of pattern in embryogenesis: regulation of beta-catenin localization during early sea urchin development., Ettensohn CA., Sci STKE. November 14, 2006; 2006 (361): pe48.


A homologue of snail is expressed transiently in subsets of mesenchyme cells in the sea urchin embryo and is down-regulated in axis-deficient embryos., Hardin J., Dev Dyn. November 1, 2006; 235 (11): 3121-31.


Repression of mesodermal fate by foxa, a key endoderm regulator of the sea urchin embryo., Oliveri P., Development. November 1, 2006; 133 (21): 4173-81.


Nemo-like kinase (NLK) acts downstream of Notch/Delta signalling to downregulate TCF during mesoderm induction in the sea urchin embryo., Röttinger E., Development. November 1, 2006; 133 (21): 4341-53.


Endomesoderm specification in Caenorhabditis elegans and other nematodes., Maduro MF., Bioessays. October 1, 2006; 28 (10): 1010-22.


Endo16 is required for gastrulation in the sea urchin Lytechinus variegatus., Romano LA., Dev Growth Differ. October 1, 2006; 48 (8): 487-97.


Expression pattern of three putative RNA-binding proteins during early development of the sea urchin Paracentrotus lividus., Röttinger E., Gene Expr Patterns. October 1, 2006; 6 (8): 864-72.


cis-regulatory processing of Notch signaling input to the sea urchin glial cells missing gene during mesoderm specification., Ransick A., Dev Biol. September 15, 2006; 297 (2): 587-602.


Hindgut specification and cell-adhesion functions of Sphox11/13b in the endoderm of the sea urchin embryo., Arenas-Mena C., Dev Growth Differ. September 1, 2006; 48 (7): 463-72.


Embryonic expression of engrailed in sea urchins., Yaguchi S., Gene Expr Patterns. June 1, 2006; 6 (5): 566-71.


Developmental expression of HpNanos, the Hemicentrotus pulcherrimus homologue of nanos., Fujii T., Gene Expr Patterns. June 1, 2006; 6 (5): 572-7.


Specification of ectoderm restricts the size of the animal plate and patterns neurogenesis in sea urchin embryos., Yaguchi S., Development. June 1, 2006; 133 (12): 2337-46.


Good eaters, poor swimmers: compromises in larval form., Strathmann RR., Integr Comp Biol. June 1, 2006; 46 (3): 312-22.


Expression and function of blimp1/krox, an alternatively transcribed regulatory gene of the sea urchin endomesoderm network., Livi CB., Dev Biol. May 15, 2006; 293 (2): 513-25.


Nervous system development of the sea cucumber Stichopus japonicus., Nakano H., Dev Biol. April 1, 2006; 292 (1): 205-12.


CBFbeta is a facultative Runx partner in the sea urchin embryo., Robertson AJ., BMC Biol. February 9, 2006; 4 4.            


Subequatorial cytoplasm plays an important role in ectoderm patterning in the sea urchin embryo., Kominami T., Dev Growth Differ. February 1, 2006; 48 (2): 101-15.


Larval ectoderm, organizational homology, and the origins of evolutionary novelty., Love AC., J Exp Zool B Mol Dev Evol. January 15, 2006; 306 (1): 18-34.


cis-Regulatory inputs of the wnt8 gene in the sea urchin endomesoderm network., Minokawa T., Dev Biol. December 15, 2005; 288 (2): 545-58.


Transdifferentiation in holothurian gut regeneration., Mashanov VS., Biol Bull. December 1, 2005; 209 (3): 184-93.


Canonical Notch signaling is dispensable for early cell fate specifications in mammals., Shi S., Mol Cell Biol. November 1, 2005; 25 (21): 9503-8.


Nodal signaling and the evolution of deuterostome gastrulation., Chea HK., Dev Dyn. October 1, 2005; 234 (2): 269-78.


Induction and the Turing-Child field in development., Schiffmann Y., Prog Biophys Mol Biol. September 1, 2005; 89 (1): 36-92.


The micro1 gene is necessary and sufficient for micromere differentiation and mid/hindgut-inducing activity in the sea urchin embryo., Yamazaki A., Dev Genes Evol. September 1, 2005; 215 (9): 450-59.


Identification of cis-regulatory elements involved in transcriptional regulation of the sea urchin SpFoxB gene., Fung ES., Dev Growth Differ. September 1, 2005; 47 (7): 461-70.


From larval bodies to adult body plans: patterning the development of the presumptive adult ectoderm in the sea urchin larva., Minsuk SB., Dev Genes Evol. August 1, 2005; 215 (8): 383-92.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ???pagination.result.next???