Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (705) Expression Attributions Wiki
ECB-ANAT-169

Papers associated with germ layer

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Novel population of embryonic secondary mesenchyme cells in the keyhole sand dollar Astriclypeus manni., Takata H., Dev Growth Differ. June 1, 2011; 53 (5): 625-38.


Direct development of neurons within foregut endoderm of sea urchin embryos., Wei Z., Proc Natl Acad Sci U S A. May 31, 2011; 108 (22): 9143-7.


A gene regulatory network controlling the embryonic specification of endoderm., Peter IS., Nature. May 29, 2011; 474 (7353): 635-9.


The control of foxN2/3 expression in sea urchin embryos and its function in the skeletogenic gene regulatory network., Rho HK., Development. March 1, 2011; 138 (5): 937-45.


Nodal-mediated epigenesis requires dynamin-mediated endocytosis., Ertl RP., Dev Dyn. March 1, 2011; 240 (3): 704-11.


Gene expression analysis of Six3, Pax6, and Otx in the early development of the stalked crinoid Metacrinus rotundus., Omori A., Gene Expr Patterns. January 1, 2011; 11 (1-2): 48-56.


Oral-aboral patterning and gastrulation of sea urchin embryos depend on sulfated glycosaminoglycans., Bergeron KF., Mech Dev. January 1, 2011; 128 (1-2): 71-89.


The dynamic gene expression patterns of transcription factors constituting the sea urchin aboral ectoderm gene regulatory network., Chen JH., Dev Dyn. January 1, 2011; 240 (1): 250-60.


Coelomogenesis during the abbreviated development of the echinoid Heliocidaris erythrogramma and the developmental origin of the echinoderm pentameral body plan., Morris VB., Evol Dev. January 1, 2011; 13 (4): 370-81.


Echinoderms as blueprints for biocalcification: regulation of skeletogenic genes and matrices., Matranga V., Prog Mol Subcell Biol. January 1, 2011; 52 225-48.


Ancestral regulatory circuits governing ectoderm patterning downstream of Nodal and BMP2/4 revealed by gene regulatory network analysis in an echinoderm., Saudemont A., PLoS Genet. December 23, 2010; 6 (12): e1001259.                      


ankAT-1 is a novel gene mediating the apical tuft formation in the sea urchin embryo., Yaguchi S., Dev Biol. December 1, 2010; 348 (1): 67-75.


Developmental expression of COE across the Metazoa supports a conserved role in neuronal cell-type specification and mesodermal development., Jackson DJ., Dev Genes Evol. December 1, 2010; 220 (7-8): 221-34.                    


Uncoupling of complex regulatory patterning during evolution of larval development in echinoderms., Yankura KA., BMC Biol. November 30, 2010; 8 143.          


Transcriptional increase and misexpression of 14-3-3 epsilon in sea urchin embryos exposed to UV-B., Russo R., Cell Stress Chaperones. November 1, 2010; 15 (6): 993-1001.


TGFβ signaling positions the ciliary band and patterns neurons in the sea urchin embryo., Yaguchi S., Dev Biol. November 1, 2010; 347 (1): 71-81.


Functional evolution of Ets in echinoderms with focus on the evolution of echinoderm larval skeletons., Koga H., Dev Genes Evol. September 1, 2010; 220 (3-4): 107-15.


Development of a dopaminergic system in sea urchin embryos and larvae., Katow H., J Exp Biol. August 15, 2010; 213 (Pt 16): 2808-19.


Pl-nectin, a discoidin family member, is a ligand for betaC integrins in the sea urchin embryo., Zito F., Matrix Biol. June 1, 2010; 29 (5): 341-5.


Information processing at the foxa node of the sea urchin endomesoderm specification network., de-Leon SB., Proc Natl Acad Sci U S A. June 1, 2010; 107 (22): 10103-8.


The gene regulatory network basis of the "community effect," and analysis of a sea urchin embryo example., Bolouri H., Dev Biol. April 15, 2010; 340 (2): 170-8.


The endoderm gene regulatory network in sea urchin embryos up to mid-blastula stage., Peter IS., Dev Biol. April 15, 2010; 340 (2): 188-99.


A conserved gene regulatory network subcircuit drives different developmental fates in the vegetal pole of highly divergent echinoderm embryos., McCauley BS., Dev Biol. April 15, 2010; 340 (2): 200-8.


Embryonic, larval, and juvenile development of the sea biscuit Clypeaster subdepressus (Echinodermata: Clypeasteroida)., Vellutini BC., PLoS One. March 22, 2010; 5 (3): e9654.                                


Distinct embryotoxic effects of lithium appeared in a new assessment model of the sea urchin: the whole embryo assay and the blastomere culture assay., Kiyomoto M., Ecotoxicology. March 1, 2010; 19 (3): 563-70.


Spatiotemporal expression pattern of an encephalopsin orthologue of the sea urchin Hemicentrotus pulcherrimus during early development, and its potential role in larval vertical migration., Ooka S., Dev Growth Differ. February 1, 2010; 52 (2): 195-207.


The expression and distribution of Wnt and Wnt receptor mRNAs during early sea urchin development., Stamateris RE., Gene Expr Patterns. January 1, 2010; 10 (1): 60-4.


Dynamics of Delta/Notch signaling on endomesoderm segregation in the sea urchin embryo., Croce JC., Development. January 1, 2010; 137 (1): 83-91.


Nodal and BMP2/4 pattern the mesoderm and endoderm during development of the sea urchin embryo., Duboc V., Development. January 1, 2010; 137 (2): 223-35.


Characterization and expression of a sea star otx ortholog (Protxβ1/2) in the larva of Patiriella regularis., Elia L., Gene Expr Patterns. January 1, 2010; 10 (7-8): 323-7.


Nervous system development of two crinoid species, the sea lily Metacrinus rotundus and the feather star Oxycomanthus japonicus., Nakano H., Dev Genes Evol. December 1, 2009; 219 (11-12): 565-76.


Cdc42- and IRSp53-dependent contractile filopodia tether presumptive lens and retina to coordinate epithelial invagination., Chauhan BK., Development. November 1, 2009; 136 (21): 3657-67.


Patterning of the dorsal-ventral axis in echinoderms: insights into the evolution of the BMP-chordin signaling network., Lapraz F., PLoS Biol. November 1, 2009; 7 (11): e1000248.                        


Regulative recovery in the sea urchin embryo and the stabilizing role of fail-safe gene network wiring., Smith J., Proc Natl Acad Sci U S A. October 27, 2009; 106 (43): 18291-6.


Ernest Everett Just, Johannes Holtfreter, and the origin of certain concepts in embryo morphogenesis., Byrnes WM., Mol Reprod Dev. October 1, 2009; 76 (10): 912-21.


Evolutionary modification of T-brain (tbr) expression patterns in sand dollar., Minemura K., Gene Expr Patterns. October 1, 2009; 9 (7): 468-74.


Suppressor of Hairless (Su(H)) is required for foregut development in the sea urchin embryo., Karasawa K., Zoolog Sci. October 1, 2009; 26 (10): 686-90.


Ciona intestinalis and Oxycomanthus japonicus, representatives of marine invertebrates., Sasakura Y., Exp Anim. October 1, 2009; 58 (5): 459-69.


FGFRL1 is a neglected putative actor of the FGF signalling pathway present in all major metazoan phyla., Bertrand S., BMC Evol Biol. September 9, 2009; 9 226.            


Monte Carlo analysis of an ODE Model of the Sea Urchin Endomesoderm Network., Kühn C., BMC Syst Biol. August 23, 2009; 3 83.                      


Hedgehog signaling patterns mesoderm in the sea urchin., Walton KD., Dev Biol. July 1, 2009; 331 (1): 26-37.


Blocking Dishevelled signaling in the noncanonical Wnt pathway in sea urchins disrupts endoderm formation and spiculogenesis, but not secondary mesoderm formation., Byrum CA., Dev Dyn. July 1, 2009; 238 (7): 1649-65.


Reduced O2 and elevated ROS in sea urchin embryos leads to defects in ectoderm differentiation., Agca C., Dev Dyn. July 1, 2009; 238 (7): 1777-87.


Fluorescent in situ hybridization reveals multiple expression domains for SpBrn1/2/4 and identifies a unique ectodermal cell type that co-expresses the ParaHox gene SpLox., Cole AG., Gene Expr Patterns. June 1, 2009; 9 (5): 324-8.


Oral-aboral axis specification in the sea urchin embryo III. Role of mitochondrial redox signaling via H2O2., Coffman JA., Dev Biol. June 1, 2009; 330 (1): 123-30.


Building developmental gene regulatory networks., Li E., Birth Defects Res C Embryo Today. June 1, 2009; 87 (2): 123-30.


Sniffing out new data and hypotheses on the form, function, and evolution of the echinopluteus post-oral vibratile lobe., Bishop CD., Biol Bull. June 1, 2009; 216 (3): 307-21.


A perturbation model of the gene regulatory network for oral and aboral ectoderm specification in the sea urchin embryo., Su YH., Dev Biol. May 15, 2009; 329 (2): 410-21.


Evolutionary modification of specification for the endomesoderm in the direct developing echinoid Peronella japonica: loss of the endomesoderm-inducing signal originating from micromeres., Iijima M., Dev Genes Evol. May 1, 2009; 219 (5): 235-47.


Chordin is required for neural but not axial development in sea urchin embryos., Bradham CA., Dev Biol. April 15, 2009; 328 (2): 221-33.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ???pagination.result.next???