Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (705) Expression Attributions Wiki
ECB-ANAT-169

Papers associated with germ layer

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 11 12 13 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

microRNAs regulate β-catenin of the Wnt signaling pathway in early sea urchin development., Stepicheva N., Dev Biol. June 1, 2015; 402 (1): 127-41.


Combined Effects of Cadmium and UVB Radiation on Sea Urchin Embryos: Skeleton Impairment Parallels p38 MAPK Activation and Stress Genes Overexpression., Bonaventura R., Chem Res Toxicol. May 18, 2015; 28 (5): 1060-9.


Late Alk4/5/7 signaling is required for anterior skeletal patterning in sea urchin embryos., Piacentino ML., Development. March 1, 2015; 142 (5): 943-52.


Geometric control of ciliated band regulatory states in the sea urchin embryo., Barsi JC., Development. March 1, 2015; 142 (5): 953-61.


Expession patterns of mesenchyme specification genes in two distantly related echinoids, Glyptocidaris crenularis and Echinocardium cordatum., Yamazaki A., Gene Expr Patterns. March 1, 2015; 17 (2): 87-97.


A cnidarian homologue of an insect gustatory receptor functions in developmental body patterning., Saina M., Nat Commun. February 18, 2015; 6 6243.          


Molecular characterization of the apical organ of the anthozoan Nematostella vectensis., Sinigaglia C., Dev Biol. February 1, 2015; 398 (1): 120-33.                        


Dose-dependent nuclear β-catenin response segregates endomesoderm along the sea star primary axis., McCauley BS., Development. January 1, 2015; 142 (1): 207-17.


Development of ciliary bands in larvae of the living isocrinid sea lily Metacrinus rotundus., Amemiya S., Acta Zool. January 1, 2015; 96 (1): 36-43.          


Multispectral labeling of embryonic cells with lipophilic carbocyanine dyes., Volnoukhin M., Mol Reprod Dev. January 1, 2015; 82 (7-8): 619-24.


Methods for imaging individual cilia in living echinoid embryos., Morris RL., Methods Cell Biol. January 1, 2015; 127 223-41.


Neurogenesis in directly and indirectly developing enteropneusts: of nets and cords., Kaul-Strehlow S., Org Divers Evol. January 1, 2015; 15 (2): 405-422.              


Mechanisms of the epithelial-to-mesenchymal transition in sea urchin embryos., Katow H., Tissue Barriers. January 1, 2015; 3 (4): e1059004.


Echinoderm conundrums: Hox genes, heterochrony, and an excess of mouths., Lacalli T., Evodevo. December 22, 2014; 5 (1): 46.  


Regulatory logic and pattern formation in the early sea urchin embryo., Sun M., J Theor Biol. December 21, 2014; 363 80-92.


A computational model for BMP movement in sea urchin embryos., van Heijster P., J Theor Biol. December 21, 2014; 363 277-89.


Early asymmetric cues triggering the dorsal/ventral gene regulatory network of the sea urchin embryo., Cavalieri V., Elife. December 2, 2014; 3 e04664.                            


Manipulation of developing juvenile structures in purple sea urchins (Strongylocentrotus purpuratus) by morpholino injection into late stage larvae., Heyland A., PLoS One. December 1, 2014; 9 (12): e113866.              


Specific functions of the Wnt signaling system in gene regulatory networks throughout the early sea urchin embryo., Cui M., Proc Natl Acad Sci U S A. November 25, 2014; 111 (47): E5029-38.


bicaudal-C is required for the formation of anterior neurogenic ectoderm in the sea urchin embryo., Yaguchi S., Sci Rep. October 31, 2014; 4 6852.            


Specification to biomineralization: following a single cell type as it constructs a skeleton., Lyons DC., Integr Comp Biol. October 1, 2014; 54 (4): 723-33.


Modular evolution of DNA-binding preference of a Tbrain transcription factor provides a mechanism for modifying gene regulatory networks., Cheatle Jarvela AM., Mol Biol Evol. October 1, 2014; 31 (10): 2672-88.            


Wnt-Notch signalling crosstalk in development and disease., Collu GM., Cell Mol Life Sci. September 1, 2014; 71 (18): 3553-67.


Restricted expression of karyopherin alpha mRNA in the sea urchin suggests a role in neurogenesis., Byrum CA., Gene Expr Patterns. September 1, 2014; 16 (1): 51-60.


Hox expression in the direct-type developing sand dollar Peronella japonica., Tsuchimoto J., Dev Dyn. August 1, 2014; 243 (8): 1020-9.


Delayed transition to new cell fates during cellular reprogramming., Cheng X., Dev Biol. July 15, 2014; 391 (2): 147-57.


Migration of sea urchin primordial germ cells., Campanale JP., Dev Dyn. July 1, 2014; 243 (7): 917-27.


Molecular conservation of metazoan gut formation: evidence from expression of endomesoderm genes in Capitella teleta (Annelida)., Boyle MJ., Evodevo. June 17, 2014; 5 39.          


A detailed staging scheme for late larval development in Strongylocentrotus purpuratus focused on readily-visible juvenile structures within the rudiment., Heyland A., BMC Dev Biol. May 19, 2014; 14 22.          


Encoding regulatory state boundaries in the pregastrular oral ectoderm of the sea urchin embryo., Li E., Proc Natl Acad Sci U S A. March 11, 2014; 111 (10): E906-13.


Pattern and process during sea urchin gut morphogenesis: the regulatory landscape., Annunziata R., Genesis. March 1, 2014; 52 (3): 251-68.


Growth factors and early mesoderm morphogenesis: insights from the sea urchin embryo., Adomako-Ankomah A., Genesis. March 1, 2014; 52 (3): 158-72.


Branching out: origins of the sea urchin larval skeleton in development and evolution., McIntyre DC., Genesis. March 1, 2014; 52 (3): 173-85.


Eph-Ephrin signaling and focal adhesion kinase regulate actomyosin-dependent apical constriction of ciliary band cells., Krupke OA., Development. March 1, 2014; 141 (5): 1075-84.


Sea urchin neural development and the metazoan paradigm of neurogenesis., Burke RD., Genesis. March 1, 2014; 52 (3): 208-21.


Time- and dose-dependent gene expression in sea urchin embryos exposed to UVB., Russo R., Mar Environ Res. February 1, 2014; 93 85-92.


Oral-aboral identity displayed in the expression of HpHox3 and HpHox11/13 in the adult rudiment of the sea urchin Holopneustes purpurescens., Morris VB., Dev Genes Evol. February 1, 2014; 224 (1): 1-11.


Mesomere-derived glutamate decarboxylase-expressing blastocoelar mesenchyme cells of sea urchin larvae., Katow H., Biol Open. January 15, 2014; 3 (1): 94-102.              


Brief notes on the meaning of a genomic control system for animal embryogenesis., Davidson E., Perspect Biol Med. January 1, 2014; 57 (1): 78-86.


Cis-regulatory control of the nuclear receptor Coup-TF gene in the sea urchin Paracentrotus lividus embryo., Kalampoki LG., PLoS One. January 1, 2014; 9 (11): e109274.                    


Myogenesis in the sea urchin embryo: the molecular fingerprint of the myoblast precursors., Andrikou C., Evodevo. December 2, 2013; 4 (1): 33.              


Expression of wnt and frizzled genes during early sea star development., McCauley BS., Gene Expr Patterns. December 1, 2013; 13 (8): 437-44.


Expression of skeletogenic genes during arm regeneration in the brittle star Amphiura filiformis., Czarkwiani A., Gene Expr Patterns. December 1, 2013; 13 (8): 464-72.        


Short-range Wnt5 signaling initiates specification of sea urchin posterior ectoderm., McIntyre DC., Development. December 1, 2013; 140 (24): 4881-9.


Nuclearization of β-catenin in ectodermal precursors confers organizer-like ability to induce endomesoderm and pattern a pluteus larva., Byrum CA., Evodevo. November 4, 2013; 4 (1): 31.        


New regulatory circuit controlling spatial and temporal gene expression in the sea urchin embryo oral ectoderm GRN., Li E., Dev Biol. October 1, 2013; 382 (1): 268-79.


Growth factor-mediated mesodermal cell guidance and skeletogenesis during sea urchin gastrulation., Adomako-Ankomah A., Development. October 1, 2013; 140 (20): 4214-25.


Towards 3D in silico modeling of the sea urchin embryonic development., Rizzi B., J Chem Biol. September 13, 2013; 7 (1): 17-28.      


An essential role for maternal control of Nodal signaling., Kumari P., Elife. September 10, 2013; 2 e00683.                              


A detailed description of the development of the hemichordate Saccoglossus kowalevskii using SEM, TEM, Histology and 3D-reconstructions., Kaul-Strehlow S., Front Zool. September 6, 2013; 10 (1): 53.                            

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 11 12 13 ???pagination.result.next???