Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (2174) Expression Attributions Wiki
ECB-ANAT-10

Papers associated with embryo

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Structure and function of a sea urchin orthodenticle-related gene (HpOtx)., Kiyama T., Dev Biol. January 15, 1998; 193 (2): 139-45.


Protein tyrosine kinase activity following fertilization is required to complete gastrulation, but not for initial differentiation of endoderm and mesoderm in the sea urchin embryo., Livingston BT., Dev Biol. January 1, 1998; 193 (1): 90-9.


Sperm-induced local [Ca2+]i rise separated from the Ca2+ wave in sea urchin eggs in the presence of a gamete fusion inhibitor, jaspisin ., Mohri T., Development. January 1, 1998; 125 (2): 293-300.


Sea urchin ovoperoxidase: oocyte-specific member of a heme-dependent peroxidase superfamily that functions in the block to polyspermy., LaFleur GJ., Mech Dev. January 1, 1998; 70 (1-2): 77-89.


The sea urchin egg yolk granule is a storage compartment for HCL-32, an extracellular matrix protein., Mayne J., Biochem Cell Biol. January 1, 1998; 76 (1): 83-8.


Temporal-spatial expression of two Paracentrotus lividus cell surface proteins., Romancino DP., Cell Biol Int. January 1, 1998; 22 (4): 305-11.


The oligomeric integrity of toposome is essential for its morphogenetic function., Scaturro G., Cell Biol Int. January 1, 1998; 22 (4): 321-6.


Changes in the pattern of adherens junction-associated beta-catenin accompany morphogenesis in the sea urchin embryo., Miller JR., Dev Biol. December 15, 1997; 192 (2): 310-22.


Characterization of the role of cadherin in regulating cell adhesion during sea urchin development., Miller JR., Dev Biol. December 15, 1997; 192 (2): 323-39.


SpMyb functions as an intramodular repressor to regulate spatial expression of CyIIIa in sea urchin embryos., Coffman JA., Development. December 1, 1997; 124 (23): 4717-27.


Organization of the proximal promoter of the hatching-enzyme gene, the earliest zygotic gene expressed in the sea urchin embryo., Ghiglione C., Eur J Biochem. December 1, 1997; 250 (2): 502-13.


Transcripts containing the sea urchin retroposon family 1 (SURF1) in embryos of the sea urchin Anthocidaris crassispina., Yamaguchi M., Zoolog Sci. December 1, 1997; 14 (6): 947-52.


Green Fluorescent Protein in the sea urchin: new experimental approaches to transcriptional regulatory analysis in embryos and larvae., Arnone MI., Development. November 1, 1997; 124 (22): 4649-59.


Charge interactions in sperm-egg recognition., Philip J., Acta Histochem. November 1, 1997; 99 (4): 401-10.


Large plasma membrane disruptions are rapidly resealed by Ca2+-dependent vesicle-vesicle fusion events., Terasaki M., J Cell Biol. October 6, 1997; 139 (1): 63-74.                    


The SpHE gene is downregulated in sea urchin late blastulae despite persistence of multiple positive factors sufficient to activate its promoter., Wei Z., Mech Dev. October 1, 1997; 67 (2): 171-8.


Calcium release at fertilization in starfish eggs is mediated by phospholipase Cgamma., Carroll DJ., J Cell Biol. September 22, 1997; 138 (6): 1303-11.          


Spatial distribution of collagen type I mRNA in Paracentrotus lividus eggs and embryos., Gambino R., Biochem Biophys Res Commun. September 18, 1997; 238 (2): 334-7.


Kinesin- and myosin-driven steps of vesicle recruitment for Ca2+-regulated exocytosis., Bi GQ., J Cell Biol. September 8, 1997; 138 (5): 999-1008.            


Heterotrimeric kinesin-II is required for the assembly of motile 9+2 ciliary axonemes on sea urchin embryos., Morris RL., J Cell Biol. September 8, 1997; 138 (5): 1009-22.              


Characterization of a metalloproteinase: a late stage specific gelatinase activity in the sea urchin embryo., Robinson JJ., J Cell Biochem. September 1, 1997; 66 (3): 337-45.


Identification and localization of a sea urchin Notch homologue: insights into vegetal plate regionalization and Notch receptor regulation., Sherwood DR., Development. September 1, 1997; 124 (17): 3363-74.


Covalent variation is a general property of transcription factors in the sea urchin embryo., Harrington MG., Mol Mar Biol Biotechnol. September 1, 1997; 6 (3): 153-62.


Archenteron precursor cells can organize secondary axial structures in the sea urchin embryo., Benink H., Development. September 1, 1997; 124 (18): 3461-70.


Specification of endoderm in the sea urchin embryo., Godin RE., Mech Dev. September 1, 1997; 67 (1): 35-47.


Looking into the sea urchin embryo you can see local cell interactions regulate morphogenesis., Wilt FH., Bioessays. August 1, 1997; 19 (8): 665-8.


Isolation and amino acid sequence analysis reveal an ancient evolutionary origin of the cleavage stage (CS) histones of the sea urchin., Brandt WF., Eur J Biochem. August 1, 1997; 247 (3): 784-91.


Probable participation of phospholipase A2 reaction in the process of fertilization-induced activation of sea urchin eggs., Kamata Y., Dev Growth Differ. August 1, 1997; 39 (4): 419-28.


LiCl perturbs ectodermal veg1 lineage allocations in Strongylocentrotus purpuratus embryos., Cameron RA., Dev Biol. July 15, 1997; 187 (2): 236-9.


Two Otx proteins generated from multiple transcripts of a single gene in Strongylocentrotus purpuratus., Li X., Dev Biol. July 15, 1997; 187 (2): 253-66.


Multiple positive cis elements regulate the asymmetric expression of the SpHE gene along the sea urchin embryo animal-vegetal axis., Wei Z., Dev Biol. July 1, 1997; 187 (1): 71-8.


Sea urchin hatching enzyme (envelysin): cDNA cloning and deprivation of protein substrate specificity by autolytic degradation., Nomura K., Biochemistry. June 10, 1997; 36 (23): 7225-38.


The allocation of early blastomeres to the ectoderm and endoderm is variable in the sea urchin embryo., Logan CY., Development. June 1, 1997; 124 (11): 2213-23.


Regulated exocytosis and sequential construction of the extracellular matrix surrounding the sea urchin zygote., Matese JC., Dev Biol. June 1, 1997; 186 (1): 16-26.


Disruption of gastrulation and oral-aboral ectoderm differentiation in the Lytechinus pictus embryo by a dominant/negative PDGF receptor., Ramachandran RK., Development. June 1, 1997; 124 (12): 2355-64.


Spfkh1 encodes a transcription factor implicated in gut formation during sea urchin development., Luke NH., Dev Growth Differ. June 1, 1997; 39 (3): 285-94.


Oral/aboral ectoderm differentiation of the sea urchin embryo depends on a planar or secretory signal from the vegetal hemisphere., Yoshikawa S., Dev Growth Differ. June 1, 1997; 39 (3): 319-27.


Isolation and characterization of an endodermally derived, proteoglycan-like extracellular matrix molecule that may be involved in larval starfish digestive tract morphogenesis., Reimer CL., Dev Growth Differ. June 1, 1997; 39 (3): 381-97.


Origin of the epidermis in parasitic platyhelminths., Tyler S., Int J Parasitol. June 1, 1997; 27 (6): 715-38.


Comparative analysis of fibrillar and basement membrane collagen expression in embryos of the sea urchin, Strongylocentrotus purpuratus., Suzuki HR., Zoolog Sci. June 1, 1997; 14 (3): 449-54.


Ultrastructure and synthesis of the extracellular matrix of Pisaster ochraceus embryos preserved by freeze substitution., Crawford BJ., J Morphol. May 1, 1997; 232 (2): 133-53.


Skeletal morphogenesis in the sea urchin embryo: regulation of primary mesenchyme gene expression and skeletal rod growth by ectoderm-derived cues., Guss KA., Development. May 1, 1997; 124 (10): 1899-908.


Caffeine overrides the S-phase cell cycle block in sea urchin embryos., Patel R., Zygote. May 1, 1997; 5 (2): 127-38.


The S.//.A.IG amino acid motif is present in a replication dependent late H3 histone variant of P. lividus sea urchin., Fucci L., FEBS Lett. April 21, 1997; 407 (1): 101-4.


Collagen fibrillogenesis during sea urchin development--retention of SURF motifs from the N-propeptide of the 2alpha chain in mature fibrils., Lethias C., Eur J Biochem. April 15, 1997; 245 (2): 434-40.


Histological distribution of FR-1, a cyclic RGDS-peptide, binding sites during early embryogenesis, and isolation and initial characterization of FR-1 receptor in the sand dollar embryo., Katow H., Dev Growth Differ. April 1, 1997; 39 (2): 207-19.


Studies on the mechanism for Cai-transients in sea urchin zygotes caused by refertilization and external application of sperm extract., Osawa M., Exp Cell Res. February 25, 1997; 231 (1): 104-11.


An endogenous calcium oscillator may control early embryonic division., Swanson CA., Proc Natl Acad Sci U S A. February 18, 1997; 94 (4): 1194-9.


Mechanisms of evolutionary changes in timing, spatial expression, and mRNA processing in the msp130 gene in a direct-developing sea urchin, Heliocidaris erythrogramma., Klueg KM., Dev Biol. February 1, 1997; 182 (1): 121-33.


Fate specification along the sea urchin embryo animal-vegetal axis., Angerer RC., Biol Bull. February 1, 1997; 192 (1): 175-7.

???pagination.result.page??? ???pagination.result.prev??? 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 ???pagination.result.next???