Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (42) Expression Attributions Wiki
ECB-ANAT-297

Papers associated with pigment cell

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Ultrastructural observations on changes in cell shape in chromatophores of the sea urchin Centrostephanus longispinus., Weber W., Cell Tissue Res. January 1, 1980; 206 (1): 21-33.


Local light stimulation of isolated chromatophores of the sea urchin Centrostephanus longispinus., Gras H., Eur J Cell Biol. February 1, 1981; 23 (2): 258-66.


The origin of pigment cells in embryos of the sea urchin Strongylocentrotus purpuratus., Gibson AW., Dev Biol. February 1, 1985; 107 (2): 414-9.


Migratory and invasive behavior of pigment cells in normal and animalized sea urchin embryos., Gibson AW., Exp Cell Res. December 1, 1987; 173 (2): 546-57.


Macromere cell fates during sea urchin development., Cameron RA., Development. December 1, 1991; 113 (4): 1085-91.


An acid extract from dissociation medium of sea urchin embryos, induces mesenchyme differentiation., Dolo V., Cell Biol Int Rep. June 1, 1992; 16 (6): 517-32.


Mesodermal cell interactions in the sea urchin embryo: properties of skeletogenic secondary mesenchyme cells., Ettensohn CA., Development. April 1, 1993; 117 (4): 1275-85.


SpHmx, a sea urchin homeobox gene expressed in embryonic pigment cells., Martinez P., Dev Biol. January 15, 1997; 181 (2): 213-22.


Role of cell adhesion in the specification of pigment cell lineage in embryos of the sea urchin, Hemicentrotus pulcherrimus., Kominami T., Dev Growth Differ. December 1, 1998; 40 (6): 609-18.


Establishment of pigment cell lineage in embryos of the sea urchin, Hemicentrotus pulcherrimus., Kominami T., Dev Growth Differ. February 1, 2000; 42 (1): 41-51.


Sea urchin goosecoid function links fate specification along the animal-vegetal and oral-aboral embryonic axes., Angerer LM., Development. November 1, 2001; 128 (22): 4393-404.


Process of pigment cell specification in the sand dollar, Scaphechinus mirabilis., Kominami T., Dev Growth Differ. April 1, 2002; 44 (2): 113-25.


Essential role of growth factor receptor-mediated signal transduction through the mitogen-activated protein kinase pathway in early embryogenesis of the echinoderm., Katow H., Dev Growth Differ. October 1, 2002; 44 (5): 437-55.


Behavior and differentiation process of pigment cells in a tropical sea urchin Echinometra mathaei., Takata H., Dev Growth Differ. January 1, 2003; 45 (5-6): 473-83.


Isolation of pigment cell specific genes in the sea urchin embryo by differential macroarray screening., Calestani C., Development. October 1, 2003; 130 (19): 4587-96.


Sphedgehog is expressed by pigment cell precursors during early gastrulation in Strongylocentrotus purpuratus., EgaƱa AL., Dev Dyn. October 1, 2004; 231 (2): 370-8.


Behavior of pigment cells closely correlates the manner of gastrulation in sea urchin embryos., Takata H., Zoolog Sci. October 1, 2004; 21 (10): 1025-35.


cis-regulatory processing of Notch signaling input to the sea urchin glial cells missing gene during mesoderm specification., Ransick A., Dev Biol. September 15, 2006; 297 (2): 587-602.


Logic of gene regulatory networks., Materna SC., Curr Opin Biotechnol. August 1, 2007; 18 (4): 351-4.


Gene regulatory network interactions in sea urchin endomesoderm induction., Sethi AJ., PLoS Biol. February 3, 2009; 7 (2): e1000029.                        


Nodal and BMP2/4 pattern the mesoderm and endoderm during development of the sea urchin embryo., Duboc V., Development. January 1, 2010; 137 (2): 223-35.


Cis-regulatory analysis of the sea urchin pigment cell gene polyketide synthase., Calestani C., Dev Biol. April 15, 2010; 340 (2): 249-55.


Expression of Pigment Cell-Specific Genes in the Ontogenesis of the Sea Urchin Strongylocentrotus intermedius., Ageenko NV., Evid Based Complement Alternat Med. January 1, 2011; 2011 730356.            


Novel population of embryonic secondary mesenchyme cells in the keyhole sand dollar Astriclypeus manni., Takata H., Dev Growth Differ. June 1, 2011; 53 (5): 625-38.


Synthetic in vivo validation of gene network circuitry., Damle SS., Proc Natl Acad Sci U S A. January 31, 2012; 109 (5): 1548-53.


A comprehensive analysis of Delta signaling in pre-gastrular sea urchin embryos., Materna SC., Dev Biol. April 1, 2012; 364 (1): 77-87.


Cis-regulatory logic driving glial cells missing: self-sustaining circuitry in later embryogenesis., Ransick A., Dev Biol. April 15, 2012; 364 (2): 259-67.


An ancient role for Gata-1/2/3 and Scl transcription factor homologs in the development of immunocytes., Solek CM., Dev Biol. October 1, 2013; 382 (1): 280-92.


Myogenesis in the sea urchin embryo: the molecular fingerprint of the myoblast precursors., Andrikou C., Evodevo. December 2, 2013; 4 (1): 33.              


Pigment cell differentiation in sea urchin blastula-derived primary cell cultures., Ageenko NV., Mar Drugs. June 27, 2014; 12 (7): 3874-91.                  


Logics and properties of a genetic regulatory program that drives embryonic muscle development in an echinoderm., Andrikou C., Elife. July 28, 2015; 4                                       


Comparative Study of Regulatory Circuits in Two Sea Urchin Species Reveals Tight Control of Timing and High Conservation of Expression Dynamics., Gildor T., PLoS Genet. July 31, 2015; 11 (7): e1005435.          


Robustness and Accuracy in Sea Urchin Developmental Gene Regulatory Networks., Ben-Tabou de-Leon S., Front Genet. January 1, 2016; 7 16.    


Antimitotic activity of the pyrimidinone derivative py-09 on sea urchin embryonic development., Macedo D., Toxicol In Vitro. March 1, 2016; 31 72-85.


Roles of hesC and gcm in echinoid larval mesenchyme cell development., Yamazaki A., Dev Growth Differ. April 1, 2016; 58 (3): 315-26.


Eph and Ephrin function in dispersal and epithelial insertion of pigmented immunocytes in sea urchin embryos., Krupke OA., Elife. July 30, 2016; 5               


Perturbation of gut bacteria induces a coordinated cellular immune response in the purple sea urchin larva., Ch Ho E., Immunol Cell Biol. October 1, 2016; 94 (9): 861-874.                


IL17 factors are early regulators in the gut epithelium during inflammatory response to Vibrio in the sea urchin larva., Buckley KM., Elife. April 27, 2017; 6                                   


Evolutionary recruitment of flexible Esrp-dependent splicing programs into diverse embryonic morphogenetic processes., Burguera D., Nat Commun. November 27, 2017; 8 (1): 1799.              


Notch-mediated lateral inhibition is an evolutionarily conserved mechanism patterning the ectoderm in echinoids., Erkenbrack EM., Dev Genes Evol. January 1, 2018; 228 (1): 1-11.


Gastrulation in the sea urchin., McClay DR., Curr Top Dev Biol. January 1, 2020; 136 195-218.


Regulation of dynamic pigment cell states at single-cell resolution., Perillo M., Elife. August 19, 2020; 9                               

???pagination.result.page??? 1